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Preface
In a statistical description of nature only expectation values or correlations are observable.

Christof Wetterich, 1997 [299, p. 2678]

One is almost tempted to assert that the usual interpretation in terms of sharp eigenvalues is
‘wrong’, because it cannot be consistently maintained, while the interpretation in terms of expec-
tation values is ‘right’, because it can be consistently maintained.

John Klauder, 1997 [160, p. 6]

What has become known as the quantummeasurement problem […] encapsulates many of the fun-
damental conceptual difficulties that have to this date prevented us from arriving at a commonly
agreed-upon understanding of the physical meaning of the formalism of quantum mechanics and
of how this formalism relates to the perceived world around us.

Maximilian Schlosshauer, 2007 [265, p. VIII]

This book introduces mathematicians, physicists, and philosophers to a new, coher-
ent approach to theory and interpretation of quantum physics (including quantum
mechanics, quantum statistical mechanics, quantum field theory, and their applica-
tions), inwhich classical and quantum thinking live peacefully side by side and jointly
fertilize the intuition.

An interpretation of quantum mechanics relates its formalism to the actual in-
formal practice of using quantum mechanics in our scientific culture. An impeccable
interpretation must show that there is a fully consistent relation between theory and
practice. The interpretation may use concepts familiar from our culture to explain the
working of quantum physics in practice to everyone’s satisfaction.

What are the shortcomings of the current approaches? Theminimal statistical
interpretation predicts the statistics of outcomes of experiments. It is silent about the
interpretation of quantummechanics in the absence of measurements, and therefore
about the interpretation of quantumphysics applied to the far past of the universe, be-
fore experiments were possible. This constitutes a serious gap—the interpretation is
consistent, but incomplete (as it should be for a “minimal” interpretation). TheCopen-
hagen interpretation, which claims that nothing can be asserted in the absence of a
measurement, is also consistent. But this sounds like the concept that a tree fallen
in the wood has fallen only after someone has seen it. This is one of the reasons why
quantum mechanics comes across as somewhat strange. In a many-world interpreta-
tion, the world splits and splits, completely unnoticed by us, into all possible futures.
This is science fiction by conception. The other known interpretations are either vari-
ations of the above or require additional, in principle, unobservable, and hence fic-
tional stuff. As a result, much of quantum physics appears to the general public as a
kind of quantummagic.

Why do physicists live with this? A noteworthy aspect of the standard inter-
pretations is that the state vector cannot represent the whole universe, since it must

https://doi.org/10.1515/9783110667387-201



VIII | Preface

exclude an observer or measuring device that determines when a measurement has
occurred. This is the so-called Heisenberg cut between the quantum and the classical
world. To date, this has not been a problem inmaking successful experimental predic-
tions, so practitioners are often satisfiedwith the quantum formalism in a standard in-
terpretation. Tradition builds the quantum edifice on a time-honored foundation that
accounts for essentially all experimental facts. But it takes a “shut-up-and-calculate”
attitude towards the interpretation of the foundations. The traditional presentation of
quantum physics is clearly adequate for prediction, but seems not to be suitable for
an adequate understanding.

A second reason is that a number of popular “quantum magicians”, very experi-
enced quantum physics practitioners specializing in quantum optics, like to give their
audience the impression that important parts of quantum mechanics are weird. And
the general public loves it! Part of themagicians’ art consists of remaining silent about
the true reasonswhy thingswork rationally, since then theweirdness is gone, andwith
it the entertainment value.

Does quantummechanics have to be weird? It sells much better to the general
public if it is presented that way, and there is a long history of proceeding like this. But
it is an obstacle for everyonewhowants to truly understand quantummechanics, and
to physics students, who have to unlearn what they were told as laypersons. When
presented in the right way, quantum mechanics is not at all weird, but very close to
classical mechanics. Much of the weirdness comes from forcing quantum mechanics
into the straightjacket of a particle picture. The particle picture breaks down com-
pletely in the subatomic domain, as witnessed by the many weird things that result
from such a view.

Coherent quantum physics removes the radical split between classical mechanics
and quantum mechanics. This book demonstrates that at any level of detail, Nature
can be rationally and objectively understood just by interpreting the traditional, well-
established mathematics of quantum physics in an appropriate way. This requires a
reinterpretation of the tradition. The interpretation featured in this book succeeds
without any change in the theory, and without introducing new counterintuitive fea-
tures or new theoretical concepts. The resulting quantum features then are only those
familiar from everyday life.

Nature, aswe perceive it with our eyes, consists of images—inmathematical terms
2-dimensional fields, with properties (colors) at each point. Our brains interpret im-
ages as scenes in a, strictly speaking, not directly perceived 3-dimensional world of
objects. The same object seems larger or smaller depending on its distance from us,
with a shape that is deduced from images showing the object from different perspec-
tives. All our observations are indirect:Weperceive images and other sensory informa-
tion and infer the true (theoretical, reproducible, invariant) properties of the objects
around us.

From the experience of themultitude of such sensory perceptions ofmany people,
our culture created a network of concepts and relations now called science, and in
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particular physics. Space has become 3-dimensional, represented at each particular
time by 3-dimensional fields that tell the spatial properties of the materials present
at each point in space. Their boundaries delineate the objects, some sharply, others—
such as clouds—only in a fuzzy way.

Space thus becomes equipped with many properties. There are local properties,
such as temperature, colors, hardness, stress, and chemical composition. In fluids
there are properties like salt concentration, but also pressure, streaming velocity, et
cetera. Each of these gives rise to a field that specifies how these properties vary with
the position in space. In addition, there are less tangible invisible properties, such as
those described by the electromagnetic field. The latter describes the properties re-
sponsible for the electric and magnetic phenomena in Nature, on which much of our
modern culture depends. Additionally, there are bilocal properties, such as distances
between two points in space. There are also nonlocal, region-dependent properties,
such as the diameter, mass, and volume of an extended object, or the surface area of
its boundary.

Objects often move. Just like photographs of stars in a long term night exposure,
they trace out tracks in an abstract 3-dimensional space. These tracks form curves
of a thickness depending on the objects’ size. The theory of special relativity teaches
us beyond this 3-dimensional picture of the world a 4-dimensional perspective in a
4-dimensional Minkowski space, whose coordinates represent both space and time.
Due to length contraction and time dilation, shapes look and clocks move differently
for observers moving at different velocities relative to each other. In special relativity,
moving points are represented by so-called world lines; the curves they trace out in
Minkowski space. The objects we see are extended in space, and therefore trace out
world tubes—thin or thick tracks in 4 dimensionswith boundaries reflecting the sharp
or fuzzy, constant or changing shape of the objects.

Materials vibrate and produce sound. The electromagnetic field vibrates and pro-
duces light. Both are phenomena characterizing the behavior of waves. These can be
decomposed into harmonic waves of specified direction and frequency. The possible
frequencies of vibrationmake up a spectrum. A small part of these spectra are directly
observable by thehumanear and eye; a very largepart is indirectly observable through
various spectroscopic techniques.

Fields are representations of the continuum, infinitely divisible space and time.
But continuous fields are also the cause of discrete events. Continuous water waves
may causediscrete, randomdamage. Bullets firedonplexiglass describedby the stress
fields of continuummechanics cause visible, discrete random cracks emanating from
the center of impact. Casting a die, modeled by the continuous laws of classical me-
chanics, results in a random, discrete value—depending on which face it falls.

If we compare the motion of the Moon, a car, a leaf falling from a tree, or a pollen
corn inwater, we realize that light objectsmove less predictably. This introduces a sec-
ond form of randomness into scientific descriptions. Often,measurements do not pro-
duce exactly the same results. Typically, the best empirical approximation to the true
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value of something measured is a simple average of multiple measurements—there is
a democracy of measurement results. This insight, a form of the law of large numbers,
justifies statistical techniques. They allowone to obtainmuchuseful information from
many inaccurate measurements.

This feature of Nature extends down to the smallest scales. On the scale of hu-
man experience, unanimated matter is highly predictable. But on the molecular and
atomic level, matter is observed to behave mostly in a random way. Therefore, the re-
producible information about microscopic events consists mostly of statistical prop-
erties, such as chemical reaction rates. On the subatomic level, Nature’s behavior is
so uncertain that even the opinions on what exists are somewhat controversial.

Anewapproach.Fromamore technical perspective, thenewapproachdescribed
in this book may be summarized as follows:

Coherent quantum physics is physics in terms of a coherent space consisting
of a line bundle over a classical phase space and an appropriate coherent product.
The kinematical structure of quantum physics and the meaning of the fundamen-
tal quantum observables are given by the symmetries of this coherent space, their
infinitesimal generators, and associated operators on the quantum space of the co-
herent space.

The formal, mathematical core of quantum physics is cleanly separated from the
interpretational issues. To achieve this, we need to avoid some of the traditional quan-
tum mechanical jargon. In particular, following the convention of Allahverdyan
et al. [7], we add the prefix “q-” to all traditional quantum notions that suggest by
their name a particular interpretation, and hence might confuse the borderline be-
tween theory and interpretation. In particular, the operators usually called1 “ob-
servables” will be called “q-observables” to distinguish them from observables in
the operational sense of numbers obtainable from observation. Similarly, we use the
terms q-expectation and q-probability for the conventional but formally defined terms
expectation and probability.

Objective properties, including their uncertainties are given by q-expectations of
products of quantum fields and what is computable from these. The dynamics of the
universe is given by the Ehrenfest equations for q-expectations, and defines the dy-
namics of every physical subsystem by restriction. Particles are approximate effective
descriptions of certain extended blops of mass and/or energy, descriptions that make
sense only under special conditions.

Certain q-expectations are approximately observed in experiments. Like ordinary
averages, q-expectations become more accurate (that is, less uncertain) by averag-
ing over many similar items. Averaging over macroscopic spacetime regions produces
macroscopic quantities with negligible uncertainty, and leads to classical physics.

1 This notion appears first in Dirac’s 1930 book [70, pp. 28]. Later editions make the restriction that
observables are Hermitian, and have real spectrum.
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Thenewapproach involves one radical step, the reinterpretationof anassumption
underlying traditional quantum physics that was virtually never questioned before:
The eigenvalue link between theory and observation is replaced by a q-expectation
link. This leads to a new interpretation of quantum mechanics, the thermal inter-
pretation, introduced in Chapter 9. It transforms the way one has to think about the
relation between theory and reality:

When performing on a quantum system a measurement of a quantity A with a
physical meaning, one gets an approximation for its value. The thermal interpretation
treats the measured value as an approximation not of an eigenvalue of A but of the q-
expectation of A, the formal expectation value defined as the trace of the product of
Awith a density operator describing the state of the system. The approximation error
is of the order of the uncertainty σA. This postulate is more or less implied by—and
hence more cautious than—the traditional postulate that the measured value is an
eigenvalue, obtained with the probability given by Born’s rule.

This novel postulate of the thermal interpretation remains therefore valid
in all cases where the traditional postulates apply. It avoids a number of problems
of Born’s rule (collected in the Appendix).

For this book, I rearranged, condensed, and augmented the material from a num-
ber of preprints (Neumaier [202, 203, 204, 205, 206, 207, 211] andNeumaier&Ghaani
Farashahi [212]; see also the exposition at the website Neumaier [200]) such that,
after an introductory chapter—explaining the reasons for the book and the main
results—the formal “shut-up-and-calculate”, probably less controversial part—comes
first, the thermal interpretation comes second, and the detailed critique of the tradi-
tion (that motivated everything) comes last.

The coherent foundations proposed here in a programmatic way resolve the prob-
lems with the traditional presentation of quantum mechanics discussed in the intro-
ductory Chapter 1. Part I features the mathematics of quantum physics, a formal core
and its development that follows in a purely logical way from basic axioms and def-
initions that build on it. It gives a coherent, interpretation-independent description
of quantum theory. Part II motivates, defines, and develops the thermal interpreta-
tion and its implication for the complex of conceptual issues called the measurement
problem. Part III is an Appendix containing a detailed critique of Born’s rule, a cen-
terpiece of the tradition, of the concepts of states and ensembles, and a comparison
to traditional interpretations.

This book is not an introduction toquantummechanics.Muchof thematerial is in-
tended to be nontechnical, needing only a fairly elementary background. It is aimed at
a wide audience that is familiar with some traditional quantum mechanics and basic
terms from functional analysis. But another large part of the material is addressed to
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experts.2 There I refer to technical aspects, usually explained in the references given.
Thus, where necessary, I drawwhatever seems relevant for coherent foundations from
functional analysis, quantum mechanics, quantum field theory, and statistical me-
chanics, while skippingmany techniques that are treated in typical textbooks. For the
sake of definiteness, the fundamental description of Nature is taken in this book to be
given by 4-dimensional relativistic quantum field theory in Minkowski space-time.3

Since this is ongoing research, I also refer tomaterial that is still unpublished andwill
appear elsewhere.

For the discussion of questions related to this book, please use the discussion fo-
rum Physics Overflow at https://www.physicsoverflow.org. See also my webpage
on the thermal interpretation at https://www.mat.univie.ac.at/~neum/physfaq/
therm. A list of errata will be maintained there; please report corrections to me at
Arnold.Neumaier@univie.ac.at.

I would like to thank Arash Ghaani Farashahi, Waltraud Huyer, Rahel Knöpfel,
DavidBarMoshe,MikeMowbray, Karl-HermannNeeb,HermannSchichl andEricWof-
sey for useful discussions related to coherent spaces. The material on interpretation
benefited from discussions with Hendrik van Hees, Rahel Knöpfel, Mike Mowbray,
Paul Pöll, and Francois Ziegler, which are also gratefully appreciated.

The puzzle ofmaking sense of the foundations of quantumphysics heldmy atten-
tion formany years. Around 2003, I discovered that group coherent states are formany
purposes very useful objects; before, they were—for me—just a facet that physicists
(who needed them for quantum optics) studied. In 2007, I realized that apparently
all of quantum mechanics and quantum field theory can be profitably cast into this
form, and that coherent states may provide better theoretical foundations for quan-
tummechanics and quantumfield theory than the current Fock space approach. Since
then I have been putting them bit by bit into the new framework, and always found
(after some work) everything nicely fitting. With each new piece in place, I got in-
sights about how to interpret everything, and things got simpler and simpler as I pro-
ceeded. Or rather, more and more complicated things became understandable with-
out significantly increasing the complexity of the new picture. Everything became
much more transparent and intuitive than the traditional mental picture of quantum
physics.

Hints at a possible thermal interpretation of quantum physics go back at least to
1997; see the above quotes by Wetterich and Klauder. The thermal interpretation of
quantum physics itself emerged from my foundational 2003 paper Neumaier [194].

2 Nonexperts are advised to simply skip the more advanced passages and continue reading when the
discussion becomes again less technical. In particular, Part II does not depend on Chapters 4–6 and
Section 7.2, and Part III is independent of Parts I and II.
3 It does notmatterwhether or not there is a deeper underlying structure, such as that of string theory,
in terms of which quantumfield theorywould be an effective theory only. For simplicity, curved space-
times are not considered.
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It was developed by me in discussions on the newsgroups de.sci.physik, starting in
Spring 2004, and in later discussions on PhysicsForums; for the beginnings see Neu-
maier [196]. A first version of it was fully formalized (without naming the interpreta-
tion) in Sections 5.1, 5.4, and Chapter 7 of the 2008 edition of the online book by Neu-
maier & Westra [214]; see also Sections 8.1, 8.4, and Chapter 10 of the 2011 edition.
The term “thermal interpretation” appeared first in a 2010 lecture (Neumaier [197]).
Later I created adedicatedwebsite on the topic (Neumaier [198]). A recent viewclosely
related to the thermal interpretation is the 2017 work by Allahverdyan et al. [7].

I trust you will enjoy reading the book!

Vienna, June 14, 2019,
Arnold Neumaier





Foreword
The predictions of quantum mechanics are remarkably accurate, but aspects of the
interpretation of quantummechanics are still not agreed upon.

The use of coherent states as basic tools in quantum mechanics has several ad-
vantages. As an example, I cite their role in quantum/classical issues, as illustrated
by the quantum action functional given by

AQ = ∫⟨ψ(t)
(iℏ
𝜕
𝜕t
− H(P,Q))ψ(t)⟩dt

for normalized general Hilbert space vectors |ψ(t)⟩. However, classical observers may
be limited to fewer vectors, such as

p(t), q(t)⟩ = e
−iq(t)P/ℏeip(t)Q/ℏ|any⟩,

which involve moving the system to a new position q or new velocity v = p/m. This
leads to

AC = ∫⟨p(t), q(t)
(iℏ
𝜕
𝜕t
− H(P,Q))p(t), q(t)⟩dt

= ∫ (p(t)q̇(t) − H(p(t), q(t)))dt + O(ℏ; p(t), q(t)).

Observe that this is the classical action functional,with quantumcorrections for ℏ > 0,
as it must be in the real world.

The author’s book is full of connections of this sort, and they can certainly help
in clarifying quantummechanics!

August 7, 2019
John R. Klauder
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1 Introduction

This chapter sets the informal stage for the subject matter of the book. Section 1.1
presents in concise form what is typically taught as the basics in quantum physics
courses around the world. Section 1.2 gives a short overview of the most important in-
terpretations of these basic rules that were spawned by a century-long lack of clarity
of the meaning of quantummechanics. Section 1.3 gives an account of the deplorable
tradition of quantummagic that resulted from this lack of clarity. Section 1.4, the final
section, gives a preview of the coherent quantum physics proposed in this book as a
solution to the problems of interpreting quantum physics.

1.1 The 7 basic rules of quantum mechanics

The 7 basic rules (BR1)–(BR7) given below (taken from Neumaier [211]) reflect what is
typically taught as the basics in quantum physics courses around the world. They are
found in almost all introductory quantummechanics textbooks.1 Often they are stated
in terms of axioms or postulates, but this is not essential for their practical validity. In
some interpretations, some of these rules are not considered fundamental rules, but
as empirical or effective rules for practical purposes.

The footnotes contain generalizations of these rules for degenerate eigenvalues,
for mixed states, and for measurements not defined by self-adjoint operators, but by
POVMs: see Footnote 7 below. These generalizations are necessary to apply quantum
mechanics to all situations encountered in practice. The basic rules are carefully for-
mulated so that they are correct as they stand and, at the same time, fully compatible
with these generalizations.

(BR1) A quantum system is described using a Hilbert space2 ℋ.
(BR2) A pure state of a quantum system is represented by a normalized vector|ψ⟩ in ℋ; state vectors differing only by a phase factor of absolute value 1 represent

the same state.3 In the position representation, where the Hilbert space is the space
of square integrable functions of a position vector x,ψ(x) is called thewave function
of the system.

1 Among themare: Basdevant 2016; Cohen-Tannoudji, Diu and Laloe 1977; Dirac 1930, 1967; Gasiorow-
icz 2003; Greiner 2008; Griffiths and Schroeter 2018; Landau and Lifshitz 1958, 1977; Liboff 2003;McIn-
tyre 2012;Messiah 1961; Peebles 1992; Rae andNapolitano 2015; Sakurai 2010; Shankar 2016;Weinberg
2013. Even Ballentine 1998, who rejects rule (BR7), whose process (9.9), as fundamental, derives it in
the form of his (9.21) as an effective rule.
2 Often, this Hilbert space is assumed to be separable, that is, to have a countable orthonormal basis.
3 Equivalently, a pure state can be represented by a rank 1 density operator ρ = |ψ⟩⟨ψ|, satisfying
ρ2 = ρ = ρ∗ and Tr ρ = 1.Mixed states are represented by more general (nondempotent) Hermitian
density operators of trace 1.

https://doi.org/10.1515/9783110667387-001



2 | 1 Introduction

(BR3) The time evolution of an isolated quantum system represented by the state
vector |ψ(t)⟩ is given by4

iℏ d
dt
ψ(t)⟩ = Hψ(t)⟩,

where H is the Hamilton operator and ℏ is Planck’s constant. This is the Schrödinger
equation. This rule is valid in the formulation of quantum mechanics called the
Schrödinger picture. There are other, equivalent formulations of the time evolution,
especially the Heisenberg picture and the interaction pictures, where time evolution
is entirely or partially shifted from the state vector to the operators.

(BR4)Anobservable of a quantum system is represented by aHermitian operator
A with real spectrum5 acting on a dense subspace ofℋ.

(BR5) The possiblemeasured values of a measurement of an observable are the
spectral values of the corresponding operator A. In the case of a discrete spectrum,
these are the eigenvalues a satisfying A|a⟩ = a|a⟩.

(BR6) Let {|a⟩} be a complete set of (generalized) eigenvectors of the self-adjoint
operator Awith spectral values a. Let the quantum system be prepared in a state rep-
resented by the state vector |ψ⟩. If a measurement of the observable corresponding
to A is performed, the probability (density) pψ(a) for finding the measured value a is
given by

pψ(a) = ⟨a|ψ⟩2.
This is Born’s rule, in a formulation that assumes that all eigenvalues are nondegen-
erate.6

(BR7) For successive, nondestructive projective measurements with discrete re-
sults,7 eachmeasurementwithmeasuring value a can be regarded as thepreparation

4 It is equivalent to define the time evolution of an isolated quantum system by

ψ(t)⟩ = U(t)
ψ(0)⟩

with the unitary time evolution operator U(t) = e−iHt/ℏ. The evolution according to (BR3) is therefore
also referred to as unitary evolution.
5 Equivalently, A is self-adjoint.
6 In the case of degenerate eigenvalues, let {|a, ν⟩} be a complete set of (generalized) eigenvectors
of A, indexed by ν. The probability pψ(a) for finding the measured value a is then given by summing
(or integrating) over ν, that is, over the entire a-subspace

pψ(a) =∑
ν

⟨a, ν|ψ⟩

2
.

7 The projection postulate is valid only under the assumptions stated, such as passing barriers with
holes or slits, polarization filters, and certain other instruments thatmodify the state of a quantumsys-
tem passing through it. This (nonunitary, dissipative) change of the state to an eigenstate in the course
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1.2 Interpretations of quantum mechanics | 3

of a new state, whose state vector is the corresponding eigenvector |a⟩, to be used for
the calculation of subsequent time evolution and further measurements. This is the
von Neumann projection postulate.

These rules say nothing about the practically very important problem of how
to handle a nonisolated quantum system outside of explicit measurement contexts.
Hence they are only an approximate guide to the meaning of quantum mechanics
in general. Applying the rules in practice requires further assumptions and develop-
ments.

1.2 Interpretations of quantum mechanics
My ‘orthodoxy’ is not identical to that of Bohr, nor to that of Peierls, to mention two especially emi-
nent examples. Hence I must state my definition of ‘orthodoxy’.

Kurt Gottfried, 1991 [103, p. 36]

Orthodox QM, I am suggesting, consists of shifting between two different ways of understanding
the quantum state according to context: interpreting quantum mechanics realistically in contexts
where interferencematters, and probabilistically in contextswhere it does not. Obviously this is con-
ceptually unsatisfactory (at least on any remotely realist construal of QM) – it is more a description
of a practice than it is a stable interpretation. […] The ad hoc, opportunistic approach that physics
takes to the interpretation of the quantum state, and the lack, in physical practice, of a clear and
unequivocal understanding of the state – this is the quantum measurement problem.

David Wallace, 2016 [292, p. 22, p. 24]

Not further discussing the foundations of quantum mechanics beyond this is called
shut-up-and-calculate. It is the mode of working sufficient for all who do not want
to delve into often highly disputed foundational (and partly philosophical) problems.
However, the above-mentioned rules are often considered conceptually unsatisfactory
because they introduce not well-defined terms “probability”, “measurement”, and
“observer” to define these basic rules, whereas in principle one expects that at least
measurement and observation can be regarded as quantum mechanical processes or
interactions, which follow the same fundamental rules and do not play any special
role. The associated issues are treated in different ways by different interpretations
of quantummechanics.

In the Copenhagen interpretation (also called standard interpretation or or-
thodox interpretation; terminology and interpretation details vary), the above rules

of a projective measurement is often referred to as “state reduction” or “collapse of the wave function”
or “reduction of the wave packet”. Note that there is no direct conflict with the unitary evolution in
(BR3), since during a measurement a system is never isolated.
In other cases, the prepared state may be quite different; see the discussion in Landau & Lifschitz
[171, Section 7]. The most general kind of quantum measurement and the resulting prepared state is
described by so-called positive operator valued measures (POVMs).
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4 | 1 Introduction

are simply operational rules that work in practice. The state vector is a tool that one
uses to calculate the probabilities of measurement outcomes, and one is agnostic
about whether the state vector represents any object that exists in reality. Rules (BR6)
and (BR7) apply only when a measurement has occurred. Thus, unlike in classical
physics, it is not enough to specify the initial conditions of the state, and let the
state evolve. One must also specify when a measurement has occurred: Generally,
a measurement is understood to have occurred when a definite (irreversible, that is,
nonunitary) measurement result or outcome has been obtained. For example, the ob-
server records amark on a screen. (However, passing a Stern–Gerlachmagnet—which
in modern terminology is a premeasurement only—is frequently, but inaccurately,
considered to be a measurement, although it is described by a unitary process, where
even in principle no measurement result becomes available.)

A noteworthy aspect of the standard interpretation is that the state vector cannot
represent the whole universe, but must exclude an observer or measuring apparatus
that decides when a measurement has occurred; this is the so-calledHeisenberg cut
between the quantum and the classical world. To date, this has not been a problem in
making successful experimental predictions, so practitioners are often satisfied with
the quantum formalism and the standard interpretation.

However, many have suggested that there is a conceptual problem with the stan-
dard interpretation because the whole universe presumably obeys laws of physics. So
there should be laws of physics that describe the whole universe, without any need
to exclude any observer or measurement apparatus from the quantitative description.
Thenonemust be able to derive the rules (BR5)–(BR7) formeasuring subsystems of the
universe from the dynamics of the universe. The problemof how to do this is called the
measurement problem. A related problem, the problem of the emergence of a classi-
calmacroscopic world from themicroscopic quantumdescription, is often considered
as essentially solved by decoherence.

To solve the measurement problem, other interpretations of the quantum formal-
ism or theories have been proposed. These alternative interpretations or theories are
based on different postulates than those of the standard interpretation, but seek to ex-
plainwhy the standard interpretationhas been so successful (for example, by deriving
the rules of the standard interpretation from other postulates). The major alternative
interpretations or theories that have been proposed include Everett’s relative state
interpretation (ormany worlds interpretation), the ensemble interpretation (or
minimal statistical interpretation), the transactional interpretation, and the con-
sistent histories interpretation.

Still other interpretations (for example, Bohmian mechanics, Ghirardi–Rimi-
ni–Weber theory, the cellular automaton interpretation, and the thermal inter-
pretation)modify one ormore of the 7 basic rules, andonly strive to derive the latter in
some approximation for all practical purposes (FAPP). In particular, rule (BR7) cannot
be fundamental if one wants to interpret the state vector |ψ⟩ in an ontic way, that is,
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1.3 Quantum magic | 5

as somedirect and ‘faithful’ representation of ‘externally existing reality’ independent
from any observer, observation or measurement.

An interpretation of quantummechanics relates the formalism to the actual infor-
mal practice of using quantum mechanics in our scientific culture. It must show that
there is a consistent relation between theory and practice, but to show this, it may use
objects familiar from our culture without having to explain their working.

The minimal statistical interpretation does this for predicting the outcome of ex-
periments. It is silent about the interpretation of quantum mechanics in the absence
of measurements, and in particular about the interpretation of quantum physics ap-
plied to the far past before experiments were possible. This is a serious gap, but it is
consistent, just incomplete (as it should be for a “minimal” interpretation).

The Copenhagen interpretation that claims (in its most radical version) that noth-
ing canbe asserted in the absence of ameasurement is also consistent. But this sounds
like the concept that a tree fallen in the wood has fallen only after someone has seen
it, and is part of the reason (see Section 1.3 below) why quantum mechanics comes
across as somewhat strange. In amany-world interpretation anything goes, and at not
even specifiable times, the world splits and splits completely unnoticed by us. This is
already science fiction by conception.

The other known interpretations are either variations of the above or require ad-
ditional, in principle, unobservable and hence fictional stuff. Thus, none of the tradi-
tional interpretations is satisfactory.

According to the thermal interpretation of quantum physics featured in Part II of
this book, Nature existed before human minds existed and observed it. Nature has
now and had then objective properties comprehended and described locally by q-
expectations of quantum fields and nonlocally by more complicated q-expectations.
Perceptions (including experiments andmeasurements) and the resulting knowledge
only provide approximations to these objective properties. People have better approxi-
mations about precisely those aspects about which they aremore knowledgeable. The
laws and symmetries of standard quantum field theory are taken to apply exactly to
Nature, though we only approximately know the details of the field content, the de-
tailed interactions, and the detailed state of the universe. We can only explain part of
the history and predict part of the future since our knowledge and understanding of
the true state of the universe is limited.

1.3 Quantum magic
DieWahrscheinlichkeitsinterpretation (insbesondere für das spontane Auftreten von Partikeleigen-
schaften) wird allen Physikstudenten als unumstößliches Dogma ins Gehirn gebrannt. Sie ist für
viele Zwecke natürlich gerechtfertigt, beschreibt jedoch nur die halbe Wahrheit über die Wellen-
funktion und überläßt die Anwendung der dabei zu benutzenden statistischen Regeln weitgehend
der situationsbedingten Intuition.

Dieter Zeh, 2012 [314, p. 47]
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6 | 1 Introduction

I consider it to be an intellectual scandal that, nearly one hundred years after the discovery of ma-
trix mechanics by Heisenberg, Born, Jordan and Dirac, many or most professional physicists – ex-
perimentalists and theorists alike – admit to be confused about the deeper meaning of Quantum
Mechanics (QM), or are trying to evade taking a clear standpoint by resorting to agnosticism or to
overly abstract formulations of QM that often only add to the confusion.

Jürg Fröhlich, 2019 [92, p. 1]

Traditionally, those learning quantum theory are expected to abandon classical think-
ing and to learn thinking in a quantum mechanical framework completely different
from that of classical mechanics. Though students widely differ in the order in which
this happens, sooner or later, most of them are introduced to the items mentioned in
the following caricature:
– Typically, they are introduced to quantum mechanics by Planck’s explanation of

black body radiation and the Bohr–Sommerfeld quantization rules explaining the
spectral lines for the hydrogen atom, firmly establishing that Nature is quantized.

– Then they are told that Bohr’s view is obsolete, and that it was just a happy (or
even misleading) coincidence that the old quantum theory worked for hydrogen.

– Therefore, they are next acquainted with wave functions on configuration space,
their inner product, and the resulting Hilbert spaces of square integrable wave
functions.

– But almost immediately, unnormalizable bras andkets areused that donot belong
to the Hilbert space.

– They are told with little intuitive guidance (except for a vague postulated corre-
spondence principle that cannot be made to work in many cases) that in quan-
tum mechanics, observables are replaced by Hermitian operators on this Hilbert
space.

– Later they may (or may not) learn that many of these operators are not even de-
fined on the Hilbert space, but only on a subspace.

– Then theymust learn that betweenmeasurements, position andmomentum–and
hence well-defined paths – do not exist, but that when measured, they miracu-
lously get random values.

– They are taught the connection to classical physics by establishing the Ehrenfest
theorem for expectation values that obey, approximately, classical laws. Miracu-
lously, the system has at all times a well-defined mean path, even when not mea-
sured.

– They must swallow a mysterious law defining the distribution of these random
values, calledBorn’s rule. It is justifiedby the remark that it is provedby theStern–
Gerlach experiment. But Born’s rule is claimed to hold for all conceivable quan-
tummeasurements, although this experiment neither demonstrates themeasure-
ment of position, nor of momentum or other important quantities.

– No explanation is given how the Stern–Gerlach screen can possibly find out
that a particle—without having position or momentum—arrives to be measured.
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1.3 Quantum magic | 7

The Stern–Gerlach device and all of quantum mechanics begins to look like
magic.8

– They are made familiar with the postulated collapse of the wave function that
prepares the system in an eigenstate of the measured observable.

– But for measuring position or momentum, these eigenstates do not exist since
they are unnormalizable.

– As a result, classical and quantum physics appear like totally separated realms
with totally different concepts and tools, connected only by a rough-and-ready
notion of correspondence that is ambiguous and never made precise, but works
in a few key cases (and always with liberally enough usage).

– After considerable time, when they have some experience with spectral calcula-
tions, they learn how to use group theory (or, for those with only little algebra
background, spherical harmonics—rotation group representation tools in dis-
guise) to determine the spectrum for hydrogen. Miraculously, the results are
identical with those obtained by Bohr, whose approach was earlier declared to be
obsolete.

– At a far later stage, they meet (if at all) coherent states for describing laser light,
or as a tool for a semiclassical understanding of the harmonic oscillator. Miracu-
lously, a coherent state happens to perform under the quantum dynamics exact
classical oscillations.

– Only few students will also meet coherent states for the hydrogen atom, the Berry
phase, Maslov indices, and the accompanying theory of geometric quantization,
which gives the (slightly corrected) Bohr–Sommerfeld rules for the spectrum a
very respectable place in the quantum theory of exactly solvable systems, even
today relevant for semiclassical approximations.

– Even fewer students realize that this implies that, after all, classical mechan-
ics and quantum mechanics are not that far apart. A development of quantum
mechanics emphasizing the closeness of classical mechanics and quantum me-
chanics can be found in the online book by Neumaier &Westra [214].

Why does the conventional curriculum lead to such a strange state of affairs? Perhaps
this is the case because tradition builds the quantum edifice on a time-honored foun-
dation, which accounts for essentially all experimental facts, but takes a “shut-up-
and-calculate” attitude with respect to the interpretation of the foundations. The tra-
ditional presentation of quantumphysics is clearly adequate for prediction, but seems
not to be suitable for an adequate understanding.

Another reasonmight be that the weirdness in quantummechanics seems to play
an important, entertaining social role in the communication of physics. In the quan-

8 In quantum information theory, there is another, formal meaning of the terms “magic”, which has
nothing to do with this informal magic.
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8 | 1 Introduction

tum domain, there are very popular quantum magicians who are at the same time
very experienced quantumphysics practitioners specializing in quantumoptics. They
entertain the world with well-prepared quantum weirdness. They like to create for
their audience the impression that important parts of quantum mechanics are weird.
And the general public loves it!

This is common tomagicians in any field, and not specific to quantummechanics.
People very experienced in a particular area of real life can easily trick those who do
not understand the corresponding matter well enough, leading them into believing
that seemingly impossible things can happen. This is true in the classical domain,
amply documented bymagic tricks, where really weird things happen, such as rabbits
being pulled out of empty hats.

The art of a magician consists in studying particular potentially weird aspects of
Nature and presenting them in a context that emphasizes theweirdness. Part of the art
consists of remaining silent about the true reasons why things work rationally, since
then the weirdness is gone, and with it the entertainment value.

Judging by its social impact, quantum weirdness will never go away as long as
highly reputed scientists are willing to play the role of a quantum magician. But only
the presentation makes quantum mechanics appear weird. It is fully rational to the
mind sufficiently trained in mathematics and theoretical physics.

Doesquantummechanicshave tobeweird? It sellsmuchbetter to the general pub-
lic if it is presented that way, and there is a long history of proceeding that way. But, in
fact, it is an obstacle for everyonewhowants to truly understand quantummechanics,
and to physics students who have to unlearn what they were told as laypersons.

When presented in the right way, quantummechanics is not at all weird, but very
close to classical mechanics. Much of the weirdness comes from forcing quantumme-
chanics into the straightjacket of a particle picture. The particle picture breaks down
completely in the subatomic domain, as witnessed by the many weird things such a
view leads to. On the other hand, the field picture remains valid at all length and time
scales.

1.4 Coherent quantum physics

Are coherent states the natural language of quantum theory?
John Klauder, 1986 [159, title]

In 1927, when the Copenhagen interpretation (the informal agreement on the interpre-
tation reached at the 1927 Como and Solvay conferences) was forged, its main purpose
was to reconcile the then new quantum formalism with the experimental evidence
available at that time. Apart from the Stern–Gerlach experiment, the evidence con-
sisted exclusively of (i) the observation of spectra of atoms andmolecules, and (ii) the
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1.4 Coherent quantum physics | 9

need to reconcile the quantum description of the invisible microscopic details with
the classical description of the macroscopic world.

Section 2.3 (below) shows that the same evidence is naturally explained by the
thermal interpretation. Indeed, with a little more work and imagination, Paul Ehren-
fest, whose paper [76] appeared in 1927, could have easily found and justified this
interpretation.

Coherent quantum physics removes the radical split between classical mechan-
ics and quantum mechanics. That this might be feasible is already suggested by the
history of coherent states. (For the early history of coherent states see, for example, Ni-
eto [219].) In 1926, at the very beginning of modern quantum physics, coherent states
were used by Schrödinger [269] to demonstrate the closeness of classical and quan-
tum mechanical descriptions of a physical system. Schrödinger discussed the main
properties of the coherent states today known as Glauber coherent states. He did not
call them coherent states, a notion coined in 1963 by Glauber [98]. Today the term
coherent state denotes a variety of (in detail very different) collections of states dis-
playing simultaneously a classical and a quantum character.

In this book, the fundamental importance of coherent states is emphasized by
defining a coherent quantumphysics, based on the concept of coherence in various
forms, thereby rebuilding from scratch the foundations of quantum physics. Summa-
rizing the vision in the shortest terms, we may say:
– Coherent quantum physics is physics in terms of a coherent space (see Chapter 5)

consisting of a line bundle over a classical phase space and an appropriate “co-
herent product” characterizing the physical properties of a quantum system.

– The kinematical structure of quantum physics and themeaning of the fundamen-
tal quantum observables are given (in Chapter 6) by the symmetries of this coher-
ent space, their infinitesimal generators, and associated operators on the quan-
tum space of the coherent space.

– The connection of quantum physics to experiment is given through the thermal
interpretation, defined in Section 9.2. The dynamics of quantum physics is given
(for isolated systems) by the Ehrenfest equations for q-expectations (Section 2.2).

Coherent spaces reconcile the old (semiclassical, Bohr-style) thinking with the re-
quirements of the new (operator-based) quantum physics. They become the founda-
tion onwhich a better, coherent quantumphysics is built. Mathematically, these foun-
dations are equivalent to the traditional Hilbert space approach. But conceptually,
these foundations begin with what is common between the classical and the quan-
tum world.

It is a linguistic coincidence that the same word “coherence” fits several different
contexts that come together in coherent quantum physics:
– spatio-temporal coherence, the meaning of the term in “coherent states”;
– logical coherence, referring to mathematically sound foundations;
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10 | 1 Introduction

– intuitive coherence, implying that concepts make holistic sense to the intellect;
and

– coherence as harmony, the meaning of the term in “coherent configurations” and
“coherent algebras”, concepts from the combinatorics of symmetry.9

In the literature, one usually finds coherent states discussed just for themselves, or in
the context of the classical limit. However, they are also a powerful instrument in other
respects. The reason is that they have both a good intuitive semiclassical interpreta-
tion and give good access to the whole Hilbert space (and beyond). Indeed, coherent
quantum physics turns coherent states into the fundamental tool for studying quan-
tum physics.

In Section 6.6, we rephrase the formal properties of q-expectations and uncer-
tainty in amore abstract, slightly generalized setting, to emphasize the essentialmath-
ematical features and the close analogy between classical and quantum physics. We
use the coherent action principle (the Dirac–Frenkel variational procedure applied to
coherent states) to show that in coarse-grained approximations that only track a num-
ber of relevant variables, quantummechanics exhibits chaotic behavior. According to
the thermal interpretation, featured in Part II, this is responsible for the probabilistic
aspects of quantummechanics.

1.5 Overview to Part I
Part I is concernedwith an exposition of the purely formal,mathematical part of quan-
tum physics, as far as necessary for a conceptual understanding of the foundations.

Chapter 2 discusses the formal core of quantum physics. It presents, in particular,
the Ehrenfest picture of quantum mechanics, which expresses everything in terms of
q-expectations, thus giving the latter a prominent place in the theory. This, particu-

9 Coherent configurations and the associated coherent algebras were introduced in pure mathemat-
ics around 1970 (by Higman [130, 131]), completely independent of physical considerations. Special
classes of coherent configurations calledassociation schemes anddistance-regular graphs are very
well-studied, and many interesting examples are known in detail.
Coherent configurations are, in a sensemade precise in Neumaier [208], closely related to a finite vari-
ant of coherent states. Just as semisimple Lie groups act as symmetry groups of associatedRiemannian
symmetric spaces, and their representation theory leads to Perelomov coherent states, so most finite
simple groups act as symmetry groups of associated distance regular graphs. The latter is recorded
in the book by Brouwer et al. [55], of which I am a coauthor. The book appeared just about the time
when, for completely different reasons, I turned to seriously study quantum physics.
Onlymuch later, I realized the extent of the connectionof thatwork to coherent states. The two subjects
(quantum physics and the combinatorics of symmetry) met in the past only in one area, the study of
symmetric, informationally complete, positive operator valuedmeasures (SIC-POVMs); see, for
example, [308]. Today’smain open problem in the study of SIC-POVMs is Zauner’s conjecture, which
dates back to the 1999 Ph. D. thesis of Zauner [313], written under my supervision.
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1.6 Overview to Part II | 11

larly, allows us to derive classical physics from quantumphysics in the approximation
in which uncertainties can be neglected, and to derive the basic spectroscopic conse-
quences of quantummechanics in terms of resonance phenomena.

Chapter 3 precisely defines the basic notion of uncertainty, and shows how prob-
ability and statistics arise from this notion of uncertainty together with the weak law
of large numbers.

Chapter 4 discusses Euclidean spaces—abstractions of the spaces of Schwartz
functions that form a common dense domain of the unbounded operators algebras
(for example, that generated by position andmomentumoperators) that play a critical
role in practical quantum physics. It also prepares the stage for Chapter 5, which gives
rigorous definitions of the basic concepts and results on coherent spaces, without
attempting to be comprehensive. It focuses on introducing the concept of symmetries
of coherent spaces relevant for quantization.

Chapter 6 gives a general outline of a coherent quantum physics, telling the main
points of the story with as few formulas and conceptual details as justifiable. A quan-
tization procedure based on Neumaier & Ghaani Farashahi [212] leads to quantum
dynamics, which in special (completely integrable) situations can be solved in closed
form in terms of classical motions on the underlying coherent space, if the latter has
a compatible manifold structure. Spectral issues can, in favorable cases, be handled
in terms of dynamical Lie algebras. Close relations to concepts from geometric quan-
tization and Kähler manifolds are pointed out.

Chapter 7 defines the meaning of the notion of a field in the abstract setting of
Section 6.6, and shows how coherent spaces may be used to define relativistic quan-
tumfield theories. This chapter also contains the essentials of quantum statistical me-
chanics and its important concept of coarse-graining. This provides the link between
microscopic physics and the world of ordinary experience.

1.6 Overview to Part II
Part II is devoted to a coherent interpretation of quantum physics called the thermal
interpretation. We begin in Chapter 8 with a detailed analysis of the requirements
for good foundations of a physical theory. Just as in geometry and number theory,
the concepts of a mature theory should be essentially self-explaining, in a sense ex-
plained there. Chapter 9 then gives a concise exposition of the thermal interpretation,
its advantages, and some open problems. The analogy to classical physics is striking!

According to the standard interpretation of classical physics, particles exist in
classical physics. States define their objective properties. These are given by the exact
positions and momenta of the particles, some of which can be approximately mea-
sured. The basic dynamics, given by Newton’s equations of motion, has the structure
of deterministic Hamiltonianmechanics. From a fundamental point of view, fields are
(as in classical continuummechanics) only coarse-grained approximate concepts.
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12 | 1 Introduction

According to the thermal interpretation of quantum physics, fields exist in quan-
tum physics. States define their objective properties. These are given by the exact q-
expectations of the fields and their appropriately normally ordered or time-ordered
products, some of which can be approximately measured. The basic dynamics, given
by the Ehrenfest equations, has the structure of deterministic Hamiltonian mechan-
ics. From a fundamental point of view, particles are (as in classical geometric optics)
only coarse-grained approximate concepts.

Experimental physics is, in both cases, about how to do the measurements, and
under which conditions which measurements are how accurate. This is achieved us-
ing the standard theory based upon three ingredients: the formal core of quantum
mechanics, the respective foundations, and Callen’s criterion that, operationally, a
system is in a given state if its properties are consistently described by the theory for
this state.

Chapters 10 and 11 discuss the measurement problem from the point of view of
the thermal interpretation. It is shown how Born’s rule, traditionally taken to be fun-
damental, arises in measurement situations from uncontrollable influences of the en-
vironment. The discrete nature of certain quantum phenomena is explained by the
switch-like dissipative bistability of the coarse-grained approximations used tomodel
open systems. Chapter 12 discusses the emergence of particles as asymptotic entities
from the more fundamental quantum field point of view. Chapter 13 discusses several
model experiments in the light of the thermal interpretation.

1.7 Overview to Part III

Part III is an appendix featuring a critique of the tradition of quantum physics in
its mainstream interpretation (that is, treating pure states and probability as primi-
tives, without reference to hidden variables, and without modifications of the quan-
tum laws), at the same time relating it to the thermal interpretation.

This is achieved by cleanly separating in Chapter 14 a concise version of the (uni-
versally accepted) formal core of quantum physics (described in Section 2.1) from the
(controversial) interpretation issues. The latter are primarily related to measurement,
but also to questions of existence and of the meaning of basic concepts like “state”
and “particle”.

The bridge between the formal core and measurement is traditionally taken to
be Born’s rule, assumed to be exact. It is argued in Chapter 14 why this assumption
cannot be maintained. Thus, Born’s rule must be considered as a scientific law with a
restricted domain of validity.

In Chapter 15, the concepts of states and ensembles are critically reviewed. Among
others, it is shown that if the state of every composite quantum system contains all
information that can be known about a system, states cannot be pure states.
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1.7 Overview to Part III | 13

Amultitude of other interpretations of quantummechanics exist; most of them in
several variants. The final Chapter 16 discusses some of the traditional interpretations
in the light of the thermal interpretation. As we shall see, the mainstream interpreta-
tions may be regarded as partial versions of the thermal interpretation. In particular,
certain puzzling features of both the Copenhagen interpretation and the statistical
interpretation get their explanation through the thermal interpretation of quantum
physics. It is shown that both the Copenhagen interpretation and the statistical inter-
pretation have a restricted domain of validity—the statistics of few particle scattering
events, where they may be viewed as limiting cases of the thermal interpretation.
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2 Basic quantum physics
Quantum physics consists of a formal core that is universally agreed upon (basically
being a piece of mathematics with suggestive names for concepts matching related
concepts of experimental culture) and an interpretational halo (trying to make this
relation more precise) that remains highly disputed even after more than 90 years of
modern quantum physics. The latter is the subject of the interpretation of quantum
mechanics (see Part II), where many interpretations coexist and compete for the at-
tention of those interested in what quantum physics really means.

In this chapter, an axiomatic introduction to the undisputed formal core of quan-
tum physics is given. The axioms described present nonrelativistic quantum statisti-
cal mechanics in the Schrödinger picture. The relativistic case is outside the scope of
these axioms, as it must be treated by quantum field theory; see Chapter 7.

As in any axiomatic setting (necessary for a formal discipline), there are a num-
ber of different but equivalent sets of axioms or postulates that can be used to define
formal quantum physics. Since they are equivalent, their choice is a matter of conve-
nience. The choice presented here is a formulation featuring three aspects: It empha-
sises the similarity of quantummechanics and classical mechanics, gives most direct
access to statistical mechanics, and is free from allusions to measurement.

The reason for the first is that this similarity serves as a guide to meaning. From
the axiomatic setting for quantum mechanics presented below, classical mechanics
(in the Koopman setting discussed in Section 7.10) is obtained by simply restricting
the operators to be diagonal, so that all operations happen pointwise on the diagonal
elements. Thus, multiplication is commutative, and one can identify operators and
functions. In particular, the density operator degenerates into a probability density.
Therefore, the quantum case appears as a generalization of the classical case allow-
ing for noncommutativity, so that both q-observables and the density operator are
(usually infinite-dimensional) operators.

The reason for the second is that statistical mechanics is the main tool for appli-
cations of quantum physics to the macroscopic systems we are familiar with.

The reason for the third is that realistic measurements constitute a complex
process involvingmacroscopic detectors, hence should be explained by quantum sta-
tistical mechanics rather than be part of the axiomatic foundations themselves. (This
is in marked contrast to other foundations, and distinguishes the present system of
axioms.)

2.1 Axioms for the formal core of quantum physics

In full generality (that is, without the simplifications presented in the 7 basic rules of
Section 1.1), quantum physics is governed by the six axioms (A1)–(A6)1 that follow.

https://doi.org/10.1515/9783110667387-002
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18 | 2 Basic quantum physics

Note that all axioms are basis-independent. ℏ is Planck’s constant, and is often set
to 1.

(A1) A generic system (for example, a “hydrogen molecule”) is defined by spec-
ifying a (complex) Hilbert space ℍ and a self-adjoint2 linear operator H, called the
Hamiltonian (or the internal energy), mapping a dense subspaceℍ ofℍ (usually a
nuclear space) into itself.

(A2) A particular system (for example, “the ion in the ion trap on this particular
desk”) is characterized by its state ρ(t) at every3 time t in a time interval. Here ρ(t) is
a Hermitian, positive semidefinite, linear trace class operator on ℍ, satisfying at all
times the normalization condition

Tr ρ(t) = 1.

Here Tr denotes the trace.
(A3) A system is called closed (or isolated) in a time interval [t1, t2] if it satisfies

the evolution equation

d
dt
ρ(t) = i
ℏ
[ρ(t),H] for t ∈ [t1, t2], (2.1)

and open otherwise. If nothing else is apparent from the context, a system is assumed
to be closed.

(A4) Besides the internal energyH, certain other densely defined, self-adjoint op-
erators on ℍ, or vectors of such operators, are distinguished as quantum observ-
ables, short q-observables. (For example, the q-observables for a system of N dis-
tinguishable particles conventionally include for each particle several 3-dimensional
vectors: the position qa, momentum pa, orbital angular momentum La, and the
spin vector (or Bloch vector) Sa of the particle with label a. If u is a 3-vector of unit
length, then u ⋅pa, u ⋅La, and u ⋅Sa define themomentum, orbital angularmomentum,
and spin of particle a in direction u.)

(A5) For any particular system, and for every vectorX of self-adjoint q-observables
with commuting components, one associates a time-dependentmonotone linear func-
tional ⟨⋅⟩t, defining the q-expectation

⟨f (X)⟩t := Tr ρ(t)f (X)

1 The statements of the axioms contain in parentheses some additional explanations that, strictly
speaking, are not part of the axioms, but make them more easily intelligible. The list of examples
given only has illustrative character and is far from being exhaustive.
2 A linear operator H is self-adjoint iff it is Hermitian, H∗ = H, and its spectrum is real. Hermi-
tian trace class operators are always self-adjoint. The Hille–Yosida theorem says that eiX exists and is
unitary if and only if X is self-adjoint; see Thirring [286] or Reed & Simon [246].
3 Typical systems considered in practice are defined only in a bounded time interval [t1, t2]. However,
it is common (and for scattering processes necessary) to idealize and allow arbitrary times t ∈ ℝ,
where ℝ denotes the set of real numbers.
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2.2 The Ehrenfest picture of quantum mechanics | 19

of bounded continuous functions f (X) at time t. By Whittle [302], this is equivalent
to amultivariate probabilitymeasure dμt(X) on a suitable σ-algebra over the spectrum
SpecX of X, defined by

∫ dμt(X)f (X) := Tr ρ(t)f (X) = ⟨f (X)⟩t .

(This σ-algebra is uniquely determined and defines q-probabilities.)
(A6)Quantummechanical predictions consist of predicting properties (typically

q-expectations or conditional q-probabilities) of the measures defined in Axiom (A5),
given reasonable assumptions about the state, such as ground state and equilibrium
state.

Axiom (A6) specifies that the formal content of quantum physics is covered ex-
actly by what can be deduced from Axioms (A1)–(A5), without anything else added –
except for restrictions defining the specific nature of the states and q-observables, for
example, specifying commutation or anticommutation relations between some of the
distinguished q-observables. Thus, Axiom (A6) says that Axioms (A1)–(A5) are com-
plete.

Thedescriptionof aparticular closed system is therefore givenby the specification
of a particular Hilbert space (in Axiom (A1)), the specification of the q-observables
(in Axiom (A4)), and the specification of conditions singling out a particular class of
states (in Axiom (A6)). (The description of an open system involves, in addition, the
specification of details of the dynamical law.)

Given this, everything predictable in principle about the system is determined by
the theory, and hence is predicted by the theory.

At the level of the formal core, q-expectations and all other concepts introduced
are only calculational tools that enables one topredict numerical values for theoretical
objects with suggestive names. Their precise relation to experimental reality is not
specifiedby the formal core. These relations are the subjectmatter of the interpretation
of quantummechanics, whose discussion is deferred to Part II.

2.2 The Ehrenfest picture of quantum mechanics

As first observed in 1925 by Dirac [68], classical mechanics and quantum mechanics
look very similar when written in terms of the Poisson bracket.

Quantities are represented in classical mechanics by functions from a space of
suitable smooth phase space functions A(p, q), and in quantum mechanics by linear
operators A on a suitable Euclidean spaceℍ. We define the classical Lie product

A∠B := {B,A} = 𝜕pA𝜕qB − 𝜕pB𝜕qA (2.2)

(read ∠ as “Lie”) of classical quantities A,B, and the quantum Lie product

A∠B := i
ℏ
[A,B] = i

ℏ
(AB − BA) (2.3)
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20 | 2 Basic quantum physics

of quantummechanical quantities A,B. This infix notation is muchmore comfortable
than the customary bracket notation. In both cases, it is easy to verify anticommuta-
tivity,

A∠B = −B∠A,

the product rule

A∠BC = (A∠B)C + B(A∠C),

and the Jacobi relation

A∠ (B∠C) = (A∠B)∠C + B∠ (A∠C).

This shows that ∠ turns the space of quantities into a Lie algebra. It also shows that
the application of a∠ to a quantity behaves like differentiation.

We write ∫ both for the Liouville integral

∫A := ∫A(p, q) dp dq (2.4)

of a classical quantity A and for the trace

∫A := TrA (2.5)

of a quantummechanical quantity A. With this notation, it is easy to verify the invari-
ance under infinitesimal canonical transformations,

∫A∠B = 0,

from which one finds the integration by parts formula

∫(A∠B)C = ∫A(B∠C).

In the general theory, for which we refer to Neumaier [194, 195], these rules are part
of a system of axioms for Euclidean Poisson algebras, which allows one to develop
everything without reference to either the classical or the quantum case.

Quantities and linear functionals are, in general, time-dependent; sowewrite ⟨f ⟩t
for the q-expectation of f (t) at time t. In maximal generality, a q-expectation is writ-
ten in the form4

⟨A⟩t := ∫ρ(t)A(t), (2.6)

4 In the quantum case, this is the familiar formula ⟨A⟩t = Tr ρ(t)A(t).
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2.2 The Ehrenfest picture of quantum mechanics | 21

whereA(t) is an arbitrary time-dependent quantity and ρ(t) a time-dependent density
quantity, a nonnegative Hermitian operator normalized by

∫ρ = 1.

Their dynamics is given by5

Ȧ(t) = H1(t)∠A(t) (2.7)

for quantities A, and by

ρ̇(t) = ρ(t)∠H2(t) (2.8)

for the density operator ρ. Note the different treatment of quantities and the density
operator! Here H1(t) and H2(t) are arbitrary time-dependent expressions without in-
dependent physical meaning; they need not satisfy the differential equations (2.7) or
(2.8). Integrating (2.8) shows that ∫ρ is time independent, so that the dynamics is con-
sistent with the normalization of ρ.

As a consequence of the dynamical assumptions (2.7)–(2.8), the q-expectations
(2.6) have a deterministic dynamics, given in terms of H = H1 + H2 by

d
dt
⟨A⟩t = ⟨H ∠A⟩t . (2.9)

We call (2.9) theEhrenfest equation since the special case of this equation,whereA is
a position ormomentumvariable andH = p2

2m+V(q), is the sumof kinetic andpotential
energywas found in 1927 by Ehrenfest [76]. Due to the canonical commutation rules,
we have

d
dt
⟨q⟩t = ⟨H ∠ q⟩t =

⟨p⟩t
m
,

d
dt
⟨p⟩t = ⟨H ∠ p⟩t = ⟨−∇V(q)⟩t . (2.10)

5 More generally, if z is a vector of quantities satisfying (2.7), quantities given by expressions A(t) =
A(z(t), t) with an explicit time dependence satisfy (instead of (2.7)) a differential equation of the form

Ȧ(t) = i[H1(t),A(t)] + 𝜕tA(z(t), t).

This follows easily from (2.7) and the chain rule. The generality gained is only apparent since the
numbers ⟨A(z(t), t)⟩t are expressible in terms of canonical ones: In terms of a Fourier expansion

A(z(t), t) = ∫ dωeiωtAω(z(t)),

we see that
⟨A(z(t), t)⟩t = ∫ dωe

iωt⟨Aω(z(t))⟩t ,

and the Aω(z(t)) are canonical quantities, respecting (2.7). This allows us to limit the main text to the
case where A has no explicit t-dependence.
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22 | 2 Basic quantum physics

Note that the Ehrenfest equation does not involve notions of reality or measurement,
hence belongs to the formal core of quantum mechanics, and is valid independent of
issues of interpretation.

The product rule implies that d
dt ⟨A⟩t only depends on the sum H = H1 + H2, not

on H1 and H2 separately. Thus, there is a kind of gauge freedom in specifying the dy-
namics, which can be fixed by choosing either H1 or H2 arbitrarily. Fixing H1 = 0 (so
that H2 = H) makes all quantities A time-independent and defines the Schrödinger
picture. Fixing H1 as a reference Hamiltonian without interactions (so that H2 = V :=
H − H1 is the interaction) defines the interaction picture. Fixing H2 = 0 (so that
H1 = H) makes the density operator ρ time-independent, and defines theHeisenberg
picture. In the Heisenberg picture, one finds that

⟨A(u)⟩s = ⟨A(u + s − t)⟩t (2.11)

for arbitrary times s, t, u.
The Schrödinger picture is fully compatible with the formal core of quantum

physics, comprising the Axioms (A1)–(A6) discussed in Section 2.1. In particular, in
the Schrödinger picture, the von Neumann equation

d
dt
ρ(t) = i
ℏ
[ρ(t),H] for t ∈ [t1, t2] (2.12)

holds for closed systems, giving a deterministic dynamics for the density operator.
In place of the traditional Heisenberg, Schrödinger, and interaction pictures, one

can also consider another equivalent picture, in which only q-expectations figure as
dynamical variables. The name Ehrenfest picture is suggestive since, for the stan-
dard multiparticle Hamiltonian and f = p, q, this reduces to the Ehrenfest equation.
In terms of the Lie bracket on q-expectations, defined by the formula

⟨A⟩∠ ⟨B⟩ := ⟨A∠B⟩, (2.13)

the family of q-expectations6 becomes a Lie algebra 𝕃, and the Ehrenfest equation
(2.9) becomes

d
dt
⟨A⟩ = ⟨H⟩∠ ⟨A⟩. (2.14)

Equation (2.14) is quite remarkable, as it is manifestly independent of how H is split
and how the time-dependent expectation is expressed as (2.6).

The Ehrenfest picture gives a complete picture of the (classical or) quantum kine-
matics and a deterministic dynamics for the q-expectations that is equivalent to the
Schrödinger picture, the Heisenberg picture, and the interaction pictures.

6 Strictly speaking, the family of labels for q-expectations (since q-expectations themselves are just
complex numbers).
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2.3 The classical approximation | 23

It is interesting to interpret the above in terms of Hamiltonian dynamics on Pois-
sonmanifolds. An extensive discussion of classical Hamiltonian dynamics on Poisson
manifolds, in particular using Lie–Poisson brackets, and its application to rigid rotors
and fluid dynamical systems, is given inMarsden& Ratiu [181]. A Poissonmanifold
is a smooth manifold together with a Lie product on 𝔼 = C∞(M) that turns 𝔼 into a
commutative Poisson algebra. Associated with the Lie algebra 𝕃 of q-expectations is
the manifold 𝕃∗ of continuous linear functionals on 𝕃. On 𝔼 = C∞(𝕃∗), a Lie product
is given by the classical Lie–Poisson bracket, which canonically extends the formula
(2.13) to smooth functions of q-expectations. This turns 𝔼 into a commutative Poisson
algebra, hence 𝕃∗ into a Poisson manifold.7 In these terms, the Ehrenfest picture of
quantummechanics is just classical (but nonsymplectic) Hamiltonian dynamics in the
Poisson manifold 𝕃∗, with the expected energy ⟨H⟩ as the classical Hamiltonian. In
particular, as can also be seen directly, the expected energy is conserved.

2.3 The classical approximation
Es ist wünschenswert, die folgende Frage möglichst elementar beantworten zu können: Welcher
Rückblick ergibt sich vom Standpunkt der Quantenmechanik auf die Newtonschen Grundgleichun-
gen der klassischen Mechanik?

Paul Ehrenfest 1927 [76, p. 455]

In the practice of quantum physics, one often approximates a complicated quantum
dynamics by replacing certain quantities in the defining formulas by their expecta-
tions. This classical approximation is frequently justified and leads tomore tractable
simplified quantum systems. Making this replacement for all operators in the Ehren-
fest equation leads to a corresponding classical dynamics.

As an example we consider an interacting multiparticle quantum system with
mass matrix M, position operator q, and momentum operator p, both of dimension
n, with dynamics given by the Hamiltonian H = 1

2p
TM−1p + V(q). To arrive at an ap-

proximate classical equation of motion for the q-expectation q = ⟨q⟩, we apply the
Ehrenfest equation. Using the canonical commutation relations and componentwise
expectations, we find the formulas

d
dt
⟨q⟩ = M−1⟨p⟩, d

dt
⟨p⟩ = −⟨∇V(q)⟩;

hence the equation

M d2

dt2
q + ⟨∇V(q)⟩ = 0 (2.15)

7 In terms of the symplectic Poisson algebra considered by Strocchi [280] to express the quantum
mechanical dynamics of pure states ψ, the present Poisson algebra corresponds to the Poisson subal-
gebra of even functions of ψ.
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24 | 2 Basic quantum physics

by Ehrenfest [76], who observed the close formal relationship with the classical
equation of motion

M d2

dt2
q + ∇V(q) = 0 (2.16)

for this Hamiltonian. To turn this formal relationship into a quantitative approxima-
tion, we first prove the following bound in terms of the uncertainties (3.1):

Theorem 2.3.1 (Approximation lemma). Let f be a twice continuously differentiable
complex-valued function on ℝn. Then, for every vector q of n commuting self-adjoint
quantities with convex joint spectrum and every state, we have (with the spectral norm)

f (q) − f (q)
 ≤

1
2
f
(q)

n
∑
k=1

σ2qk . (2.17)

Proof. Indeed, for any q̃ in the joint spectrum of q and ε = q̃ − q, we have

f (q̃) = f (q + ε) = f (q) + f (q)ε +
1

∫
0

εT f (q + sε)εs ds.

By assumption, q+sε is for all s ∈ [0, 1] in the joint spectrum of q. Hence, by definition
of the spectral norm



εT f (q + sε)ε
εT

ε

≤ f
(q + sε)2 ≤

f
(q).

Therefore,

f (q̃) − f (q) − f
(q)(q̃ − q) ≤

1

∫
0

f
(q)ε

Tεs ds

=
1
2
f
(q)ε

Tε = 1
2
f
(q)

n
∑
k=1
(q̃k − qk)

2.

This inequality therefore also holds for q in place of q̃. Taking q-expectations, we find

⟨f (q) − f (q)⟩
 =
⟨f (q) − f (q) − f

(q)(q − q)⟩

≤
1
2
f
(q)

n
∑
k=1
⟨(qk − qk)

2⟩ =
1
2
f
(q)

n
∑
k=1

σ2qk .

Returning to our original goal, we rewrite (2.15) in the form

M d2

dt2
q + ∇V(q) = −⟨∇V(q) − ∇V(q)⟩
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2.4 The Rydberg–Ritz combination principle | 25

andapply the approximation lemma to the right-hand side. Under the assumption that
the potentialV is three times continuously differentiable and the spectrumof the third
derivative V (q) is bounded by a constant C, we find the differential inequality


M d2

dt2
q + ∇V(q)


≤ C

n
∑
k=1

σ2qk .

Thus, as long as the uncertainties σqk remain sufficiently small, the classical dynami-
cal law (2.16) holds with good accuracy for the q-expectation q in place of q.

Under these conditions, which hold by the weak law of large numbers whenever
q refers to the center of mass coordinates of macroscopic spherical bodies at macro-
scopic distances from each other, the q-expectations satisfy the traditional classical
equation of motion.

This proves thatNewton’smechanics is amacroscopic approximation to the quan-
tum dynamics of q-expectations.

A similar analysis frequently allows certain quantities to be replaced by their ex-
pectations, leading tomore tractable approximations. See, e.g., Ginibre [97] and Lieb
& Seiringer [173].

2.4 The Rydberg–Ritz combination principle

Here we show that in any quantum system, the differences of the energy levels (the
eigenvalues of the HamiltonianH) are in principle directly observable, since they rep-
resent excitable oscillation frequencies of the system; thus can be probed by coupling
the system to a harmonic oscillatorwith adjustable frequency. Therefore, the observed
spectral properties of quantum systems appear as natural resonance phenomena.

To see this, we shall assume for simplicity a quantum system, whose Hamilto-
nian has a purely discrete spectrum. For a partially continuous spectrum, analogous
results, in which sums are replaced by Stieltjes integrals, can be proved using the
Gel’fand–Maurin theorem, also known under the name nuclear spectral theorem (see
Maurin [182]).

We work in the Heisenberg picture on the basis of eigenstates of the Hamiltonian,
such that H|k⟩ = Ek |k⟩ for certain energy levels Ek . The q-expectation

⟨A(t)⟩ = Tr ρA(t) =∑
j,k
ρjkAkj(t)

is a linear combination of the matrix elements

Akj(t) = ⟨k|A(t)|j⟩ = ⟨k|e
iHt/ℏAe−iHt/ℏ|j⟩

= eiEk t/ℏ⟨k|A|j⟩e−iEjt/ℏ = eiωkjt⟨k|A|j⟩,

where

Brought to you by | Stockholm University Library
Authenticated

Download Date | 10/28/19 5:01 PM



26 | 2 Basic quantum physics

ωkj =
Ek − Ej
ℏ
. (2.18)

Thus, the q-expectation exhibits quasiperiodic oscillatory behavior, whose frequen-
cies ωjk are scaled differences of energy levels. This relation, the modern form of the
Rydberg–Ritz combination principle found in 1908 by Ritz [247], may be expressed
in Planck’s form8

ΔE = ℏω. (2.19)

To probe the spectrum of a quantum system, we bring it into contact with a macro-
scopically observable (hence classically modeled) weakly damped harmonic oscilla-
tor. For simplicity, we treat just a single harmonic oscillator. In practice, one often
observes many oscillators simultaneously, for example, by observing the oscillations
of the electromagnetic field in the form of electromagnetic radiation—light, X-rays, or
microwaves. However, in most cases, the oscillators may be regarded as independent
and noninteracting. The result of probing a systemwith multiple oscillators results in
a linear superposition of the results of probingwith a single oscillator. This is a special
case of the general fact that solutions of linear differential equations depend linearly
on the right hand side.

From the point of view of the macroscopically observable classical oscillator, the
probed quantum system appears simply as a time-dependent external force F(t) that
modifies the dynamics of the free harmonic oscillator. Instead of the harmonic equa-
tionmq̈ + cq̇ + kq = 0 with realm, c, k > 0, we get the differential equation describing
the forced harmonic oscillator, given by

mq̈ + cq̇ + kq = F(t),

where the external force F is the q-expectation

F(t) = ⟨A(t)⟩

of a quantityA from the probed system.We assume the oscillator to have an adjustable
frequency

ω = √ k
m
> 0

and consider the response as a function of ω at fixed massm and stiffness k = m2ω.
If the observation is done far from the probed system, such as an observation of

light (electromagnetic radiation) emitted by a far away source (for example, a star, but

8 The formula (2.19) appears first in the famous 1900paper by Planck [238] on the radiation spectrum
of a black body. Planck wrote it in the form ΔE = hν, where h = 2πℏ, and ν = ω/2π is the linear
frequency. The symbol for the quotient ℏ = h/2π, which translates this into our formula was invented
much later, in the 1930 quantummechanics book by Dirac [70].
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2.5 The pure state idealization | 27

also a Bunsen flame observed by the eye), the back reaction of the classical oscillator
on the probed system can be neglected. Then the probed system can be considered as
isolated and evolves according to the preceding analysis. Hence, the external force F
can be written as a superposition

F(t) =∑
l
Fle

iωlt

of exponentials oscillating with the (positive and negative) Rydberg–Ritz frequencies,
rearranged in linear order. The solution to the differential equation consists of a partic-
ular solution and a solution to the homogeneous equation. Due to damping, the latter
is transient and decays to zero. There is a distinguished particular solution persisting
after the transient decayed, which oscillates with the same frequencies as the force,
easily seen to be given by

q(t) =∑
l
qle

iωlt , ql =
Fl

m(ω2 − ω2
l ) + icωl

.

Since the frequencies are real and distinct, the denominator cannot vanish. The en-
ergy in the lth mode is therefore proportional to the amplitude

|ql|
2 =

|Fl|2

m2(ω2k − ω2
l )
2 + c2ω2

l
, (2.20)

with amaximum at the resonance frequencyω = |ωl|. The total energy is proportional
to

q(t)

2
=∑

l
|ql|

2 +∑
k ̸=l

q∗k qle
i(ωk−ωl)t . (2.21)

We now look at the short-time average (recorded by a typical detector). If the frequen-
ciesωk with significant intensity arewell-separated, the oscillating terms in (2.21) can-
cel out, and we find a total mean energy proportional to

a(t) ≈∑
l
|ql|

2 =∑
l

|Fl|2

(m2(ω2k − ω2
l )
2 + c2ω2

l
.

As a function of the varying frequency, this has the typical form of a spectral intensity,
a superposition of Lorentz-shaped resonance curves, with local maxima very close to
the resonance frequencies |ωl|.

2.5 The pure state idealization
A state ρ is called pure at time t if ρ(t) has rank one, that is, maps the Hilbert spaceℍ
to a 1-dimensional subspace, andmixed otherwise.

Althoughmuch of traditional quantum physics is phrased in terms of pure states,
this is a very special case. In most actual experiments, the systems are open and the
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28 | 2 Basic quantum physics

states are mixed. Pure states are relevant only if they come from the ground state of a
Hamiltonian, in which the first excited state has a large energy gap. Indeed, assume
for simplicity that H has a discrete spectrum. In an orthonormal basis of eigenstates
ϕk, functions f (H) of the Hamiltonian H are defined by

f (H) =∑
k
f (Ek)ϕkϕ

∗
k

whenever the function f is defined on the spectrum. The equilibrium density is the
canonical ensemble

ρ(T) = Z(T)−1e−H/kT = Z(T)−1∑
k
e−Ek/kTϕkϕ

∗
k ;

here k is the Boltzmann constant. (Of course, equating this ensemble with equilib-
rium in a closed system is an additional step beyond our system of axioms, which
would require justification.) Since the trace equals 1, we find

Z(T) =∑
k
e−Ek/kT ,

the textbook formula for the so-called partition function. In the limit T → 0, all
terms e−Ek/kT become 0 or 1, with 1 only for the k, corresponding to the states with
least energy. Thus, if the ground state ϕ1 is unique,

lim
T→0

ρ(T) = ϕ1ϕ
∗
1 .

This implies that for low enough temperatures, the equilibrium state is approximately
pure. The larger the gap between (nondegenerate) ground state and the first excited
state, the better is the approximation at a given nonzero temperature. In particular,
the approximation is good if the energy gap exceeds a small multiple of E∗ := kT.

States of sufficiently simple systems (that is, those with a few energy levels only)
can often be prepared in nearly pure states, by realizing a source governed by aHamil-
tonian, in which the first excited state has amuch larger energy than the ground state.
Dissipation then brings the system into equilibrium, and as seen above, the resulting
equilibrium state is nearly pure. Those low lying excited states, for which a selection
rule suppresses the transition to a lower energy state, can be made nearly pure in the
same way.

2.6 Schrödinger equation and formal Born rule

To see how the more traditional setting in terms of the Schrödinger equation arises,
we consider the special case of a closed system in a pure state ρ(t) at some time t. The
state vector of such a system at time t is, by definition, a unit vector ψ(t) in the range
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2.6 Schrödinger equation and formal Born rule | 29

of the pure state ρ(t). It is determined up to a phase factor (of absolute value 1), and
one easily verifies that

ρ(t) = ψ(t)ψ(t)∗. (2.22)

Remarkably, under the dynamics for a closed system specified in the above axioms,
this property persists with time if the system is closed and the state vector satisfies the
time-dependent Schrödinger equation

iℏψ̇(t) = Hψ(t).

Thus, the state remains pure at all times. Conversely, for every pure state, the phases of
ψ(t) at all times t can be chosen such that the Schrödinger equation holds; the density
operator is independent of this phase.

Moreover, if X is a vector of q-observables with commuting components and the
spectrum of X is discrete, then the measure from Axiom (A5) is discrete:

∫ dμ(X)f (X) =∑
k
pkf (Xk)

with spectral values Xk and nonnegative numbers pk summing to 1, called q-proba-
bilities.9 Associated with the pk are eigenspacesℍk such that

Xψ = Xkψ for ψ ∈ ℍk ,

and ℍ is the direct sum of the ℍk . Therefore, every state vector ψ can be uniquely
decomposed into a sum

ψ =∑
k
ψk , ψk ∈ ℍk .

ψk is called theprojectionofψ to the eigenspaceℍk . If all eigenvalues ofX arediscrete
and nondegenerate, eachℍk is 1-dimensional and spanned by a normalized eigenvec-
torϕk . Then Xϕk = Xkϕk, and the projection is given byψk = Pkψwith the orthogonal
projector Pk := ϕkϕ∗k , so that

ψ =∑
k
ϕkϕ
∗
kψ.

A short calculation using Axiom (A5) now reveals that for a pure state (2.22), the q-
probabilities pk are given by the formal Born rule

pk =
ψk(t)

2
= ϕ
∗
kψ(t)

2
, (2.23)

where ψk(t) is the projection of ψ(t) to the eigenspaceℍk .
At present, the formal Born rule (2.23) is just a piece of uninterpretedmathematics

with suggestive naming. Questions of interpretation are discussed in Part II.

9 This leaves open the precise physical meaning of q-probabilities, and the question of how to mea-
sure them. This is the price to pay for not entering into interpretational issues at this stage.
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3 Uncertainty, statistics, probability

In this chapter, we consider theway quantum theory represents deterministic, statisti-
cal, and probabilistic aspects of Nature. After a discussion in Section 3.1 of uncertainty
in general, we discuss in Sections 3.2–3.4 several formal notions of classical probabil-
ity, their relation to the probability concept used in applied statistics, and their depen-
dence on the description used. Section 3.5 briefly discusses various examples, where
probabilistic features emerge from fully deterministic situations—a theme to be taken
up in much more detail in Chapter 11. Section 3.6 then shows how the statistical as-
pects of the quantum formalism naturally follow from the weak law of large numbers.
The notions of c-probability in the classical case and of q-probability in the quantum
case are formally defined in Section 3.7.

Historically, the concept of classical probability (including its use in stochastic
processes) was given an undisputed formal mathematical foundation in 1933 in terms
of the measure-theoretic setting of Kolmogorov [164]. Apart from this traditional ax-
iomatic foundation of classical probability theory, there is a less well-known equiva-
lent axiomatic treatment byWhittle [302] in terms of expectations. Here probabilities
appear as the expectations of statements, {0, 1}-valued random variables. von Plato
[240] discusses the history of the concept of probability. Krüger et al. [169] discuss
the history of probability in the various fields of application. Sklar [275] discusses
the philosophical problems of the probability concept, with an emphasis on statisti-
cal mechanics.

3.1 Uncertainty
A quantity in the general sense is a property ascribed to phenomena, bodies, or substances that can
be quantified for, or assigned to, a particular phenomenon, body, or substance. […] The value of a
physical quantity is the quantitative expression of a particular physical quantity as the product of
a number and a unit, the number being its numerical value.

Guide for the Use of the International System of Units (Taylor [283])

The uncertainty in the result of a measurement generally consists of several components whichmay
be grouped into two categories according to the way in which their numerical value is estimated.
Type A. Those which are evaluated by statistical methods
Type B. Those which are evaluated by other means

[…] The quantities u2j may be treated like variances and the quantities uj like standard deviations.
NIST Reference on Constants, Units, and Uncertainty [220]

Uncertainty permeates all of human culture, not only science. Everything quantified
by real numbers (as opposed to counting) is intrinsically uncertain because we can-
not determine a real number with arbitrary accuracy. Even counting objects or events
is uncertain in as much the criteria that determine the conditions under which some-

https://doi.org/10.1515/9783110667387-003
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32 | 3 Uncertainty, statistics, probability

thing is counted are ambiguous. (When does the number of people in a room change
by one while someone enters the door?)

We take the virtuallyuniversal presenceof uncertainty as themost basic fact of sci-
ence and give it a quantitative expression. Some of this uncertainty can be captured by
probabilities and statistics, but the nature of much of this uncertainty is conceptual.
Thus uncertainty is a far more basic phenomenon than statistics. It is an uncertainty
in the notion of measurability itself. What does it mean to have measured something?

To be able to answer this we first need clarity in the terminology. To eliminate any
trace of observer issues1 from the terminology, we use the word quantity (as recom-
mended in the above quote from the “Guide to the International System of Units”)
or – in a more technical context – q-observable2 whenever quantum tradition uses
the word observable. Similarly, to eliminate any trace of a priori statistics from the
terminology, we frequently use the terminology uncertain value (in [214] simply
called value) instead of q-expectation value, and uncertainty instead of q-standard
deviation.

For the sake of definiteness, we first consider the notion of uncertain position.
This may mean two things:
1. It maymean that the position could be certain, as in classical Newtonian physics,

except that we do not know the precise value. However, observations of arbitrary
accuracy are at least conceivable.

2. It may mean that the position belongs to an extended object, such as a neutron
star, the Sun, a city, a cloud, a house, a tire, an apple, or a water wavelet. In each
case, there is a clear approximate notion of position as a more or less fuzzy re-
gion in space, but it does not make sense to specify this position by coordinates
to within millimeter accuracy.

It seems to be impossible to interpret the second case naturally in terms of the first
case. The only physically distinguished point-like position of an extended object is its
center of mass. Classically, one could therefore think of defining the exact position
of an extended object to be the position of its center of mass. But the sun, a city, a
house, or a water wavelet do not even have a well-defined boundary. Therefore, even

1 Exceptwhen relating to tradition,wedeliberately avoid thenotionof observables, since it is not clear
on a fundamental level what it means to “observe” something, and sincemany things (such as the fine
structure constant, neutrino masses, decay rates, scattering cross sections) observable in Nature are
only indirectly related to what is traditionally called an “observable” in quantum physics.
2 Note that renamingnotionshasnoobservable consequences, but strongly affects the interpretation.
To avoid confusion, this book follows the convention of Allahverdyan et al. [7] and adds the prefix
“q-” to all traditional quantum notions that get here a new interpretation, and hence a new termi-
nology. In particular, we use the terms q-observable, q-expectation, q-variance, q-standard deviation,
q-probability, q-ensemble for the conventional terms observable, expectation, variance, standard de-
viation, probability, and ensemble.
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3.1 Uncertainty | 33

the definition of their center of mass, which depends on what precisely belongs to the
object, is ambiguous. And, is a tire really located at its center of mass—which is well
outside the material the tire is made of? Things get worse in the microscopic realm,
where the center of mass of a system of quantum particles has not even an exactly
numerically definable meaning.

On closer inspection it seems that the situation of case 2 is very frequent in prac-
tice. Indeed, it is the typical situation in the macroscopic, classical world. Case 1 ap-
pears to be simply a convenient but unrealistic idealization.

Thus, uncertainty is only partially captured through statistical techniques. The
latter apply only in case of highly repetitive uncertain situations, leading to a particu-
lar kind of uncertainty called aleatoric uncertainty (see, e. g., [67, 229]). More general
kinds of uncertainty are discussed in the NIST Reference on Constants, Units, and Un-
certainty [220],whichmaybe regardedas thede facto scientific standard for represent-
ing uncertainty. This source explicitly distinguishes between uncertainties “which are
evaluated by statistical methods” and those “which are evaluated by other means”.
For the second category, it is recognized that the uncertainties are not statistical, but
should be treated “like standard deviations”.

We capture this fundamental—not further explained but intuitive—notion of un-
certainty at some time t in terms of q-expectations ⟨A⟩t, and drop for simplicity the
index t. The formulation chosen belongs to the formal core of quantum physics, as
it is deliberately independent of the interpretation-sensitive notions of randomness,
knowledge, observation, and measurement.

(GUP)General uncertaintyprinciple:AHermitian3 quantity A has theuncertain
value A = ⟨A⟩ with an uncertainty of4

σA := √⟨(A − A)2⟩ = √⟨A2⟩ − A
2
. (3.1)

In particular, the uncertain value A is informative whenever its uncertainty σA is much
less than |A|.

As discovered byHeisenberg [117], quantumphysics predicts unavoidable uncer-
tainty: The uncertainty of corresponding components of position q and momentum p
cannot be both arbitrarily small since

σpjσqj ≥
1
2
ℏ.

3 The uncertain value and its uncertainty makes also sense in the nonhermitian case, but the uncer-
tainty must be defined in this case as

σA := √⟨(A − A)∗(A − A)⟩ = √⟨A∗A⟩ −
A

2.

4 The equivalence of both expressions defining σA follows from A = ⟨A⟩ and

⟨(A − A)2⟩ = ⟨A2 − AA − AA + A2⟩ = ⟨A2⟩ − ⟨A⟩A − A⟨A⟩ + A2 = ⟨A2⟩ − A2.
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34 | 3 Uncertainty, statistics, probability

This inequality is the famousHeisenberg uncertainty relation— not to be confused
with the general uncertainty principle (GUP) defined above. The Heisenberg uncer-
tainty relation is a special case of themore general statement (due toRobertson [249])
that for noncommuting Hermitian operators A,B,

σAσB ≥
1
2
⟨[A,B]⟩

, (3.2)

which follows from the definitions.5

Like Ehrenfest’s equation, the Heisenberg uncertainty relation does not involve
interpretation-sensitive notions, hence belongs to the formal core of quantumphysics.
Both are valid independent of the interpretation of the q-expectations and their un-
certainties.

Note that much of quantum physics can be developedwithout using the notion of
probability at all. The notion of uncertain values ⟨A⟩ suffices for almost all of spec-
troscopy, quantum chemistry, and quantum statistical mechanics. For equilibrium
statistical mechanics, this can be seen from the treatment in Neumaier & Westra
[214].

3.2 Expectations as properties of anonymous events

Let xk (k = 1, . . . ,N) denote the (real) values of some property of a collection of N
similar classical objects. If the detailed identification of the objects is deemed irrele-
vant for certain purposes, the assignment of indices to the individual objects may be
dropped, thereby anonymizing the data. Indeed, this is a common procedure in the
statistical practice of handling sensitive data. Once this is done, we can no longer say
which property belongs to which object—in the resulting description, the objects have
become anonymous, or indistinguishable.

As a consequence, the individual values xk play no longer a useful role in the
anonymized collection. From amathematical point of view, only symmetric functions
of the xk retain meaningful information about the collection. By a well-known theo-
rem, every symmetric polynomial (and by taking limits, therefore any symmetric an-
alytic function) of the xk can be written as a function of the power sums ∑ xek (e =
1, 2, 3, . . .), equivalently, as a function of the sample expectations ⟨xe⟩ = N−1∑Nk=1 x

e
k .

Somediscontinuous symmetric functions alsoplay a role, and canbewrittenas a func-
tion of sample expectations of discontinuous functions. Thus, all properties of the

5 Indeed, the relation remains unchanged when subtracting from A and B its q-expectation, hence it
suffices to prove it for the case, where both q-expectations vanish. In this case, ⟨A2⟩ = σ2A and ⟨B

2⟩ =
σ2B, and the Cauchy–Schwarz inequality gives |⟨AB⟩|2 ≤ ⟨A2⟩⟨B2⟩ = σ2Aσ

2
B; hence |⟨AB⟩| ≤ σAσB. On

the other hand, one easily checks that i Im⟨AB⟩ = 1
2 ⟨[A,B]⟩, so that

1
2 |⟨[A,B]⟩| = | Im⟨AB⟩| ≤ |⟨AB⟩|.

Combining both inequalities gives the assertion.
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3.3 Classical probability via expectation | 35

anonymized collection are encoded in expectations ⟨f (x)⟩ of functions of the anony-
mous value x of an anonymous object of the collection.

It is precisely this situation that probability theory and statistics cater for—the de-
scription of anonymous events, not that of actual events! We assign probabilities to
anonymous events such as “casting a die gives a six” (where the indefinite article in-
dicates an anonymous die), not to the number of eyes shown on a particular die cast
at a particular time (which is not a random variable but a fixed, though possibly un-
known, value). We estimate the expected lifetime of “a 45 year old French male”, not
that of Francois Renon from Calais, say. And so on. Formally, fromwhat is mathemati-
cally modeled, anonymous objects (whose only properties are expectation values and
probabilities) are very different from typical objects, which are identifiable examples
of particular objects (whose properties are individual valueswithin observable typical
ranges).

3.3 Classical probability via expectation

This section gives an elementary introduction to classical probability theory along the
lines of Whittle [302], similar in spirit to the formal core of quantummechanics.

Let Ω denote a finite or infinite set of labels of anonymous objects. We call the el-
ements ω ∈ Ω experiments.6 Let 𝔼 be a vector space of real valued functions on Ω
containing the constant functions. We identify constant functions with their function
values. The elements A ∈ 𝔼 are called (real) random variables, and the value A(ω) is
called the realization of A in experimentω. The procedure that defines how to obtain
the realization f (ω) for any experiment ω is called the protocol defining the random
variable f . Functions, order relations, unary and binary operations, and limits on ran-
dom variables are defined pointwise. Note, however, that a pointwise function f (A) of
a random variable A ∈ 𝔼 does not necessarily lie in 𝔼.

A sample is a finite set S of |S| > 0 experiments. The associated sample mean of
a random variable A is defined by

⟨A⟩S :=
1
|S|
∑
ω∈S

A(ω). (3.3)

It is easily checked that any sample mean ⟨⋅⟩ = ⟨⋅⟩S satisfies the following rules:

6 This makes the term “experiment” a formal object independent of its meaning in experimental
physics, though the relationship is suggestive. In probability theory, Ω is called the sample space.
In statistics, the ω ∈ Ω may be identified with actual experiments carried out in the past or in the
future. In classical statistical mechanics, theω are only hypothetical experiments from a fictitious en-
semble in the sense of Gibbs, as discussed in Section 15.3 of the Appendix. In general, Ω is just a set,
and calling the ω ∈ Ω experiments is just a convenient intuition without formal meaning (compara-
ble to calling elements of a vector space vectors, even though they may be functions or matrices). For
examples, see Section 3.5 below.
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36 | 3 Uncertainty, statistics, probability

(E1) ⟨1⟩ = 1.
(E2) ⟨αA + βB⟩ = α⟨A⟩ + β⟨B⟩ for α, β ∈ ℝ.
(E3) A ≥ 0 implies ⟨A⟩ ≥ 0.
(E4) A ≥ 0, ⟨A⟩ = 0 implies A = 0.
(E5) Ak ↓ 0 implies ⟨Ak⟩ ↓ 0.

Here ↓ denotes pointwise convergence from above. To abstract from a particular sam-
ple, we define a stochastic model as an arbitrary mapping that assigns to each ran-
dom variable A a real number ⟨A⟩, called the expectation (or expected value or
mean) of A, such that the axioms (E1)–(E5) hold whenever the expectations in ques-
tion exist. All samples, arbitrary convex combinations of samples, and their limits, de-
fine a stochasticmodel. Given real statistical data from real experiments, the quality of
a stochastic model is assessed by how well the expectations of key random variables
match corresponding sample expectations for samples drawn at random in some in-
formal sense.

As a simple consequence of the axioms, we note:
(E6) ⟨A2⟩ = 0 implies A = 0.
(E7) A ≤ B implies ⟨A⟩ ≤ ⟨B⟩.

Indeed, (E6) follows directly from (E4). For (E7), the assumption givesB−A ≥ 0. Hence
⟨B − A⟩ ≥ 0 by (E3); hence ⟨B⟩ − ⟨A⟩ ≥ 0 by (E2), giving ⟨A⟩ ≤ ⟨B⟩.

An example of a random variable is the number n of eyes on the top side of a die.
Here n(ω) ∈ {1, . . . , 6} is the number of eyes on the die visible in experimentω. Wemay
thus consider 𝔼 to be the algebra generated by a single random variable n = n(ω),
taking the values 1, 2, 3, 4, 5, 6. Thus, the relevant random variables are the functions
A = A(n), defined by

A(n)(ω) := A(n(ω)).

A is determined by the vector of the six values A1 = A(1), . . . ,A6 = A(6). Therefore, we
may identify𝔼with the vector spaceℝ6 with componentwise operations. The stochas-
tic model, defined by

⟨A⟩ := 1
6
(A1 + ⋅ ⋅ ⋅ + A6),

models an ideal, permutation symmetric die.
In practice, the setΩmaybe different depending on the imagination of people and

the intended use. The expectation value is independent of ω ∈ Ω and depends—as in
the example just given—on the vector space𝔼 of relevant random variables only. This
algebra is always commutative and associative.

A statement is a {0, 1}-valued random variable A. The statement is true (false)
in an experiment ω if A(ω) = 1 (that is, A(ω) = 0). The probability of a statement A,
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3.3 Classical probability via expectation | 37

defined as

Pr(A) := ⟨A⟩,

is a number between 0 and 1. Indeed, we have 0 ≤ A ≤ 1. Thus, by (E3), ⟨A⟩ ≥ 0.
By (E6) and (E1), ⟨A⟩ ≤ ⟨1⟩ = 1. An example for a statement is S = [|A| ≥ α], for any
random variable X and real number α ≥ 0. Here [. . .] denotes the statement defined
by the formula inside the square brackets. Since [|A| ≥ α] ≤ A2/α2, we conclude from
(E7) the Chebyshev inequality

Pr(|A| ≥ α) ≤ ⟨A2⟩/α2. (3.4)

Proposition 3.3.1. If A1, . . . ,An are alternative statements, of which exactly one is true
in each experiment, then the probabilities pi := Pr(Ai) sum up to 1, and Pr(Ai ∧ Aj) = 0
for i ̸= j.

Proof. Indeed, the random variable E := ∑ni=1 Ai satisfies

χ(ω) =
n
∑
i=1

Ai(ω) = 1 for all ω ∈ Ω,

because by definition exactly one Ai occurs in each experiment ω. Therefore, E = 1,
and

1 = ⟨1⟩ = ⟨E⟩ =⟨
n
∑
i=1

Ai⟩ =
n
∑
i=1
⟨Ai⟩ =

n
∑
i=1

pi.

Similarly, (Ai ∧Aj)(ω) = Ai(ω)∧Aj(ω) = 0 for i ̸= j, since at most one of Ai(ω) and Aj(ω)
can be true. Hence, Ai ∧ Aj = 0 and Pr(Ai ∧ Aj) = Pr(0) = ⟨0⟩ = 0.

The cumulative distribution function (CDF) of a random variable A is the func-
tion cdf : ℝ→ [0, 1], defined as

cdf(x) := Pr(A ≤ x) = ⟨[A ≤ x]⟩

for all x.

Proposition 3.3.2. Every CDF is monotone increasing and satisfies

lim
ε↓0

cdf(x + ε) = cdf(x), lim
x→−∞

cdf(x) = 0, lim
x→+∞

cdf(x) = 1. (3.5)

Therefore, every CDF is continuous from the right.

Proof. By (E6), x ≤ x implies

[A ≤ x] − [A ≤ x] ≥ 0.

So by (E6),
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38 | 3 Uncertainty, statistics, probability

Pr(A ≤ x) − Pr(A ≤ x) = ⟨[A ≤ x] − [A ≤ x]⟩ = ⟨[x < A ≤ x]⟩
= Pr([x < A ≤ x]) ≥ 0,

and thus

cdf(x) ≤ cdf(x).

To prove continuity from the right, we note that the random variable

B(ε) := [x < A ≤ x + ε]

vanishes at ω with A(ω) ≤ x and for ε < A(ω) − x if A(ω) > x, and is 1 otherwise.
Therefore, B(ε) ↓ 0 for ε ↓ 0. Thus,

⟨B(ε)⟩ ↓ 0 for ε ↓ 0

by (E5). But

⟨B(ε)⟩ = Pr(x < A ≤ x + ε) = cdf(x + ε) − cdf(x).

Hence, the first limit of (3.5) follows. The other limits are proved in the same way.

Let A be a random variable with cumulative distribution function cdf. If f is a step
function with finitely many jump points at x1 ≤ ⋅ ⋅ ⋅ ≤ xn, and f is continuous from the
left, then

⟨f (A)⟩ = f (x1)cdf(x1) +
n−1
∑
k=1

f (xk+1)(cdf(xk+1) − cdf(xk)). (3.6)

Indeed, the right hand side equals the expectation of

f (x1)[A ≤ x1] + ⋅ ⋅ ⋅ +∑ f (xk)[xk−1 < A ≤ xk] = f (A).

By taking a continuum limit in (3.6), we obtain the Stieltjes integral representation

⟨f (A)⟩ =
∞

∫
−∞

f (ξ ) d cdf(ξ )

for the expectation of f (A), for any function f that is continuous from the left. Thus,
the CDF contains all information about expectations of functions of a real random
variable.

For a random variable Awith continuously differentiable cumulative distribution
function, the distribution or density ρ of A is defined as

ρ(ξ ) = d
dξ

cdf(ξ ).

It is always nonnegative since the CDF is monotone increasing. The CDF can be ex-
pressed in terms of the density as
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3.4 Description dependence of probabilities | 39

cdf(ξ ) =
ξ

∫
−∞.

ρ(ζ ) dζ

If the density ρ(x) exists, it also carries all information about expectations of functions
of A. Indeed, we have

⟨f (A)⟩ =
∞

∫
−∞

f (ξ )ρ(ξ ) dξ

since d cdf(ξ ) = ρ(ξ )dξ .

3.4 Description dependence of probabilities

Classical probabilities are dependent on the description used. The latter encode the
assumed knowledge about the system under study. Note that the implied concept of
knowledge is not the knowledge of a particular observer or person, but an informal
shorthand forwhat ismodeled in aparticular description. Thus, the “knowledge avail-
able”, that is, the knowledge encoded into a particular description, is an objective
property of the description used tomodel the system, independent of who “knows” or
“uses” it. Nothingmental is implied. A change of knowledge is therefore just a change
of the model used to describe a particular system.

Sample expectations, and hence sample probabilities, have a clear operational
meaning. But they are properties of the specific sample taken—changing the sample
changes the properties. For example, almost always when the values for new real-
izations become known, the values of sample expectations and sample probabilities
change.

Cumulative distribution functions are easy to estimate on a sample S by the sam-
ple CDF

cdfS(ξ ) =
number of ω ∈ S with x(ω) ≤ ξ

|S|
,

corresponding to the sample expectation (3.3). A sample CDF is always a step func-
tion with discontinuities at the x(ω) with ω ∈ S. In many cases, it is well approx-
imated by a smoothed CDF, using one of many smoothing methods available. The
derivative of the smoothed CDF then serves as an estimate for the density of a ran-
dom variable A in a stochastic model, in which A is treated as a random variable with
density.

In the univariate case treated above in detail, going from a known sample to pre-
dictions for not yet known samples is based on the possibility to approximate sam-
ple distributions of different sample sizes by a single model distribution since their
CDFs are very similar. This also holds in the multivariate case, though different tech-
niques must be used to establish corresponding results. Finite sample properties can
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40 | 3 Uncertainty, statistics, probability

be proved using arguments basically similar to our proof of theweak law of large num-
bers (3.11). Under reasonable assumptions, the uncertainty of the most relevant ran-
dom variables scales with O(N−1/2). This is the contents of large N approximations
that take the form of laws of large numbers and central limit theorems. They guaran-
tee enhanced predictability of the kind that themeanuncertainty is approximately the
single case uncertainty divided by√N .

Thus, the precise meaning of expectations and probabilities depends on which
stochastic model is used for a given situation. To see what happens when we change
the description,we consider the concept of conditional expectation,whichmodels the
reweighing of evidence leading to a change of the description of a model. Aweight is
a nonzero random variable P ≥ 0. Let

ΩP = {ω ∈ Ω | P(ω) > 0}.

We project the algebra 𝔼 of random variables X : Ω → ℝ to the algebra 𝔼P of random
variables Y : ΩP → ℝ by means of the homomorphism

⋅|ΩP
: 𝔼→ 𝔼P : X → X|ΩP

that restricts all random variables X ∈ 𝔼 to X|ΩP
∈ ΩP. The conditional expectation

of X : Ω→ ℝ with respect to the weight P is defined as

⟨X|ΩP
⟩P = ⟨X⟩P :=

⟨XP⟩
⟨P⟩
.

Note that ⟨P⟩ > 0by (E4). The resultingmapping ⟨⋅⟩P : 𝔼P → ℝ satisfies all expectation
axioms: (E1)–(E3) and (E5) follow directly from the corresponding axioms for ⟨⋅⟩. Only
(E4) is nontrivial; ⟨X2⟩P = 0 implies ⟨X2P⟩ = ⟨P⟩⟨X2⟩P = 0. But X2P ≥ 0. Hence, (E4)
gives X2P = 0, that is, X(ω)2P(ω) = 0 for all ω. Thus, X(ω) = 0 whenever P(ω) = 1.
This gives X|ΩP

= 0 and proves (E4). Therefore ⟨⋅⟩P is a proper expectation for the
experiments in ΩP.

In particular, any statement A with positive probability Pr(A) > 0 may be consid-
ered as a weight. Since ΩA is the set of all those experiments, where A is true, con-
ditional expectation with respect to A is just expectation in the light of the assumed
evidence that A is true. In particular, the probability for A being true changed to 1.
More generally, the conditional probability of a statement B, given the statement A,
is defined by

Pr(B|A) := ⟨B⟩A =
⟨BA⟩
⟨A⟩
=
Pr(A ∧ B)
Pr(A)

.

The last equality holds since

BA(ω) = B(ω)A(ω) = {
1 if A(ω) ∧ B(ω),
0 otherwise.

It is easily checked that for any statements A and B, we have
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3.5 The stochastic description of a deterministic system | 41

Pr(B ∧ A) = Pr(B|A)Pr(A), (3.7)

Pr(A|B) = Pr(A)Pr(B|A)
Pr(B)
. (3.8)

(3.8) is often called the Bayes theorem. In this context, Pr(A) is called the prior
probability of A, Pr(A|B) its posterior probability, and Pr(B|A)/Pr(B) the update
ratio. If A and B are independent, then ⟨AB⟩ = ⟨A⟩⟨B⟩; hence Pr(B|A)/Pr(B) = ⟨AB⟩/
⟨A⟩⟨B⟩ = 1. Thus, the update ratio captures the degree to which the knowledge of
B affects knowledge of A. Thus, Bayes theorem allows us to describe the change of
probability of a class of statements when new information (namely the statement B)
arrives and is accepted as valid. Bayes theorem is important to understand what it
means to get new information when A is a statement of interest and B is information
that becomes known. Bayes theorem tells how the probability of A changes under
new insight. Pr(A) changes into Pr(A|B), so the probability of Amust be multiplied by
the update ratio Pr(B|A)/Pr(B).

3.5 The stochastic description of a deterministic system
A stochastic description of a deterministic system is a reduced deterministic descrip-
tion by moments rather than details. Formally, it is obtained by restricting an alge-
bra of commuting, classical quantities describing a given deterministic system to the
subalgebra of quantities completely symmetric in some properties declared indis-
tinguishable for the purposes of the reduced description. Such reduced (or coarse-
grained) descriptions will be discussed in more detail in Chapter 7. In the simplest
case, where expectation is defined as sample expectation, the individual realizations,
over which the sample mean is taken are declared indistinguishable, with the conse-
quence that only symmetric functions of realizations, hence functions of expectations,
are available in the reduced descriptions.

In the terminology of knowledge discussed in Section 3.4, such a reduction
amounts to forgetting or ignoring information known from the more detailed model.
We have additional modeling uncertainty due to the lack of detail in the description
used. This description is independent of a probabilistic interpretation.7 It means that
one only considers a limited family of well-behaved relevant quantities in place of the
multitude of quantities in a more detailed description.

The analysis presented here allows one to apply statistical models to complicated
deterministic situations—not only in physics—and to single complicated spatial events
or time series. In each case, a suitable concept of expectation is introduced that allows
one to make probabilistic and other statistical statements about deterministic situa-
tions.

7 Though via the construction of Section 3.7 below, it can always be given one in terms of c-
probabilities.
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42 | 3 Uncertainty, statistics, probability

Important examples of statisticalmodels for deterministic situationswith increas-
ingly random appearance are:
(i) Thedeterministic but irregular sequence of primenumbers (Tennenbaum [285]).

Here experiments are the natural numbers, and expectations are introduced
through a mathematically rigorous limit.

(ii) Rounding errors in deterministic floating-point computations (Vignes [289]).
Here experiments are sequences of floating-point operations, and expectations
are introduced through an empirical model for single rounding errors and an
assumption of independence.

(iii) Texture in a single (hence fully determined) picture (Heeger & Bergen [115]).
Here experiments are hypothetical images of the same size, and expectations are
introduced through a mean over a (not well-defined) neighborhood of pixels.

(iv) Economic time series, for example, prices of oil and electricity (Granger&New-
bold [106]). Here experiments are hypothetical scenarios for the time series, and
expectations are introduced through a no longer fullywell-defined time average.

(v) Tomorrow’sweather prediction,when based on classical fluidmechanics (Gnei-
ting&Raftery [100]). Here experiments are againhypotheticalweather scenar-
ios, and expectations are introduced through an even less well-defined space-
time average.

(vi) Deciding for red or black by spinning a roulette wheel (Hopf [138]). Here expec-
tations may be introduced through symmetry arguments (for an ideal wheel), or
through ergodic theory.

(vii) The classical statistical mechanics of an ideal gas. Here Boltzmann [41] intro-
duced expectations through an average over all particles.

(viii) The classical statistical mechanics of solids and fluids. Here (see the discussion
in Section 15.3 of the Appendix) Gibbs [96] introduced expectations through a
fictitious average over many systems with identical macroscopic properties.

3.6 Deterministic and stochastic aspects of q-expectations
A quantityA is considered to be significant if σA ≪ |A|, while it is considered asnoise
ifσA ≫ |A|. IfA is a quantity and Ã is a goodnumerical approximation of its value, then
ΔA := A− Ã is noise. Sufficiently significant quantities can be treated as deterministic;
the analysis of noise is the subject of statistics.

Statistics is based on the idea of obtaining information about noisy quantities of a
system by repeated sampling from a population8 of independent systems with iden-

8 Physicists usually speak of an ensemble in place of a population. In this book, the statistical term
population is used instead, to keep the discussion unambiguous, since in connection with themicro-
canonical, canonical, or grand canonical ensemble, the term ensemble is essentially synonymous
with a density operator of a particularly simple form. The traditional notion of an ensemble is criti-
cized in Section 15.3 of the Appendix.
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3.6 Deterministic and stochastic aspects of q-expectations | 43

tical preparation, but differing in noisy details not controllable by the preparation. In
the present context, such systems are described by the same Hilbert space, the same
set of quantities to be sampled, and the same state ⟨⋅⟩0. The quantities therefore be-
long to the algebra LinℍS of linear operators on a Euclidean space ℍS dense in the
Hilbert space of the system.

More precisely, stochastic features emerge when we consider a large sample of
similar subsystems of a quantum system. For an ensemble of independent measure-
ments on identically prepared systems, the consensus of all interpretations is that q-
expectations represent (within the accuracy allowed by the law of large numbers) a
statistical average of the measurement results.9

We now show that a q-expectation, though introduced as an intrinsic measure of
uncertainty, may be viewed as a statistical property of many independent identically
prepared systems. We regard the systems of the population considered as subsystems
of a bigger system (for example, the laboratory) whose set of quantities is given by the
algebra Linℍof linear operators onabig Euclidean spaceℍdense in theHilbert space
of the big system. To model identically prepared subsystems, we consider injective
homomorphisms fromLinℍS into Linℍmapping, each reference quantityA ∈ LinℍS
to the quantity Al ∈ Linℍ of the lth subsystem considered to be “identical” with A. Of
course, in termsof thebig system, theAl arenot really identical; they refer to quantities
distinguished by position and/or time. That the subsystems are identically prepared
is instead modeled by the assumption

⟨Ak⟩ = ⟨Al⟩ for all k ̸= l, (3.9)

and that they are independent by the assumption

⟨AkAl⟩ = ⟨Ak⟩⟨Al⟩ for all k ̸= l. (3.10)

The following result is fundamental for statistical considerations:

Theorem 3.6.1 (Weak law of large numbers). For a sample of quantities Al (l = 1,
. . . ,N), satisfying (3.9) and (3.10), themean quantity

Â := 1
N

N
∑
l=1

Al

9 In order to take q-expectations alternatively as a time average of a single system, one would need
to invoke an ergodic theorem, stating that the time average equals the ensemble average. However,
most deterministic systems are far from ergodic. (This is mentioned, for example, in the statistical
physics book by Landau & Lifschitz [172, Footnote 2, p. 12].) From the eight examples of statistical
models for deterministic systems given in Section 3.5, only two—cases (vi) and (vii)—have a generally
valid ensemble interpretation in terms of ergodicity. Thus, the interpretation of q-expectations as a
time average is usually not warranted. Moreover, in the quantum version to be discussed in amoment,
such an ergodic theorem makes sense only semiclassically. This also means (Neumaier [199]) that—
in contrast to what is usually done in the popular literature—the so-called vacuum fluctuations of
quantum field theory cannot be interpreted as fluctuations in time.
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44 | 3 Uncertainty, statistics, probability

(which again is a quantity) satisfies for any l

⟨Â⟩ = ⟨Al⟩, σÂ = σAl
/√N . (3.11)

Proof. By (3.9) and (3.10), μ := ⟨Al⟩ and σ := σAl
are independent of l, and we have

⟨Â⟩ = 1
N
(⟨A1⟩ + ⋅ ⋅ ⋅ + ⟨AN⟩) =

1
N
(μ + ⋅ ⋅ ⋅ + μ) = μ,

⟨Â ∗Â ⟩ = 1
N2⟨(∑

j
Aj)
∗

(∑
k
Ak)⟩ = N

−2∑
j,k
⟨A∗j Ak⟩. (3.12)

Now

⟨A∗j Aj⟩ = ⟨Aj⟩
∗⟨Aj⟩ + σ

2
Aj
= |μ|2 + σ2,

and by (3.10) for j ̸= k,

⟨A∗j Ak + A
∗
kAj⟩ = 2 Re⟨A

∗
j Ak⟩ = 2 Re⟨Aj⟩

∗⟨Ak⟩ = 2 Re μ
∗μ = 2|μ|2.

The sum in (3.12) leads to a contribution of |μ|2+σ2 for each of theN diagonal elements,
and of 2|μ|2 for each of the (N2) pairs of off-diagonal elements. Therefore,

⟨Â ∗Â ⟩ = N−2(N(|μ|2 + σ2) + (N
2
)2|μ|2) = N−1σ2 + |μ|2,

so that

σ2Â = ⟨Â
∗Â ⟩ − ⟨Â ⟩∗⟨Â ⟩ = N−1σ2,

and the assertions follow.

A significant body of work in probability theory shows that the conditions under
which σÂ → 0 as N →∞ can be significantly relaxed. Thus, in practice, it is sufficient
if (3.9) and (3.10) are approximately valid.

The significance of the weak law of large numbers lies in the fact that (3.11) be-
comes arbitrarily small as N becomes sufficiently large. Therefore, the uncertainty of
quantities—when averaged over a large population of identically prepared systems—
becomesarbitrarily small,while themeanvalue reproduces the valueof eachquantity.

The weak law of large numbers implies that, in a context where many repeated
experiments are feasible, states can be given a frequentist interpretation, in which
A = ⟨A⟩ is the expectation of A, empirically defined as an average over many real-
izations. In this case (and only in this case), the uncertainty σA becomes the standard
deviation of A; then it captures the absolute accuracy of the individual realizations.

This determines the conditions under which deterministic and statistical reason-
ing are justified:

(SP) Statistical principle: Deterministic reasoning is appropriate for all suffi-
ciently significant quantities. Statistical reasoning is necessary for noisy quantities, and
requires that these quantities are sufficiently similar and sufficiently independent to
ensure that their mean is significant.
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3.7 What is probability?

In Section 3.3, we derived from (E1)–(E5) the traditional probabilistic machinery for
single real random variables. More generally, it can be proved (see Whittle [302])
that even in themultivariate case, the above approach to classical probability is equiv-
alent to the measure theoretical approach in the traditional axiomatic setting of Kol-
mogorov. In this equivalence, Ω is an abstract measure space; a stochastic model is
a probability measure on Ω, and 𝔼 is a vector space of random variables with finite
expectations.

The exposition in Whittle [302] (or, in more abstract terms, already in Gelfand
& Naimark [94]) shows that, if the Xj are pairwise commuting, it is possible to define
for any Gibbs state in the present sense, random variables Xj in Kolmogorov’s sense,
such that the expectation of all sufficiently regular functions f (X) defined on the joint
spectrum of X agrees with the value of f . It follows that in the pairwise commuting
case, it is always possible to construct a probability interpretation for the quantities,
completely independent of any assumed microscopic reality. (If the components of X
do not commute, a probabilistic interpretation in the Kolmogorov sense is no longer
possible because of the nonclassical uncertainty relations (3.2).)

The details (which the reader unfamiliar with measure theory may simply skip)
are as follows: We may associate with every vector X of quantities with commuting
components a time-dependent, monotone linear functional ⟨⋅⟩t defining the expec-
tation

⟨f (X)⟩t := Tr ρ(t)f (X)

at time t of arbitrary bounded continuous functions f of X. These functions de-
fine a commutative C∗-algebra 𝔼(X). The spectrum SpecX of X is the set of all
∗-homomorphisms (called characters) from 𝔼(X) to ℂ, and has the structure of a
Hausdorff space, with theweak-∗ topology, obtained by calling a subset S of SpecX
closed if, for any pointwise convergent sequence (or net) contained in S, its limit is also
in S. Now an expectation functional, satisfying (E1)–(E5), turns out to be equivalent
to a multivariate probability measure dμt(X) (on the sigma algebra of Borel subsets of
the spectrum Ω of X), defined by

∫ dμt(X)f (X) := ∫ρ(t)f (X) = ⟨f (X)⟩t .

Both Whittle’s and Kolmogorov’s foundations of classical probability theory are ax-
iomatic, hence independent of the interpretation of the axioms. Wemay refer to prob-
ability as defined by Kolmogorov or Whittle as c-probability.

In generalization of this, we refer, for any Hermitian operators P satisfying 0 ≤
P ≤ 1, to its expectation as the q-probability

Pr(P) := ⟨P⟩
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46 | 3 Uncertainty, statistics, probability

of P. As a special case, we call a quantity P, satisfying P2 = P = P∗, a statement;
then 0 ≤ P ≤ 1 follows by the spectral theorem. For a statement P, the uncertainty
of its probability p = P is σP = √p(1 − p) since by (3.1), σ2P = ⟨P

2⟩ − P2 = p − p2.
Another special case is the q-probability of a self-adjoint Hermitian q-observable A
taking values in some open interval ]a, b[ of real numbers, defined as

Pr(A ∈ ]a, b[) := ⟨P]a,b[(A)⟩,

where P = P]a,b[(A) is the spectral projector of A to the interval ]a, b[. Note that here
P2 = P = P∗, so that P is a statement—the formal equivalent of the informal statement
“A is in ]a, b[”.

Whittle’s approach is essentially equivalent to the commutative case of the formal
core of quantummechanics, interpreted in statistical terms. Then q-probabilities and
c-probabilities agree.

We discuss in more detail the important special case of binary tests, where Born’s
rule frequently applies essentially exactly. An ideal binarymeasurement, for exam-
ple, the click of a detector, is described by a statement P, coding the presence (1) or
absence (0) of a click. In particular, a test for a state10 ϕ with ϕ∗ϕ = 1 is an ideal
binary measurement of P = ϕϕ∗; it is easily checked that this is a statement. By the
above, such a test turns out positive with probability p = ⟨P⟩. In particular, if the sys-
tem is in a pure state ψ, then p = ⟨P⟩ = ψ∗Pψ = ψ∗ϕϕ∗ψ = |ϕ∗ψ|2; hence

p = ϕ
∗ψ

2.

This is the well-known squared probability amplitude formula appearing in the for-
mal Born’s rule, which appears not as a basic axiom, but as one of its natural conse-
quences.

10 Note that a test for ϕ turns out positively with probability 1 if the measured system is in the pure
state ϕ. However, it also turns out positively with a positive probability if the measured system is in a
pure state different from ϕ, as long as it is not orthogonal to it. Thus, calling it a “test for ϕ”, though
conventional, is a misnomer.
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4 Euclidean spaces

There is a notational discrepancy in howmathematicians and physicists treat Hilbert
spaces. In physics, one often works with finite-dimensional Hilbert spaces treated
as ℂn, and hence wants to write the Hermitian inner product as ⟨x, y⟩ = x∗y. This
definition dictates the use of a Hermitian inner product that is antilinear in the first
argument, the convention followed, for example, in Reed & Simon [246]. This is also
the choice adopted in Dirac’s bracket notation, whose usage in quantum mechanics
is very widespread.

Our notation is chosen to extend—as closely as possible—the traditional nota-
tion of standard finite-dimensional matrix algebra to arbitrary complex inner product
spaces and associated linear operators. Inmatrix algebra, column vectors and the cor-
responding matrices with one column are identical objects, row vectors are the linear
functionals, and the adjoint is the conjugate transpose. For example, ℍ = ℍ× = ℂn

is the space of column vectors of size n, the dual spaceℍ∗ is the space of row vectors
of size n, and the operator product ϕ∗ψ of a row vector ϕ∗ and a column vector ψ is
the standard Hermitian inner product of the column vectors ϕ and ψ. We use Greek
lower case letters to write vectors, thus emphasizing their intended use as quantum
state vectors in quantummechanics.

On the other hand,mathematiciansworking on reproducing kernelHilbert spaces
use an inner product (x, y) antilinear in the second argument, related to the physicist’s
inner product ⟨x, y⟩ by (x, y) = ⟨x, y⟩. This is the convention followed, for example, in
Rudin [252]. Although the two ways of defining the inner product lead to fully equiv-
alent theories, all details look a bit different, a fact that has to be taken into account
when reading the literature on the subject. For example, in the description based on
the physical tradition, it is preferable to work with the antidual space in place of the
dual space used in the mathematical tradition.

In functional analysis, linear operators in Hilbert spaces are usually considered
each with their own domain. But many computations in quantum mechanics require
the consideration of algebras of operators with a common domain. The latter is a Eu-
clidean space, a dense subspace of a Hilbert space. This space and its antidual play in
many respects a more basic role in quantum physics than the Hilbert space itself.

Therefore, and to avoid possible confusion caused by the different traditions, we
give in the present chapter a self-contained introduction to Euclidean spaces and their
associated spaces. All proofs are carried out in detail.

4.1 Euclidean spaces and their antidual

A Euclidean space is a complex vector spaceℍ with a binary operation that assigns
toϕ,ψ ∈ ℍ theHermitian inner product ⟨ϕ,ψ⟩ ∈ ℂ, antilinear in the first and linear

https://doi.org/10.1515/9783110667387-004
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48 | 4 Euclidean spaces

in the second argument, such that

⟨ϕ,ψ⟩ = ⟨ψ,ϕ⟩, (4.1)
⟨ψ,ψ⟩ > 0 for all ψ ∈ ℍ \ {0}. (4.2)

Here α > 0 says that the complex number α is real and positive.
Since every Euclidean space can be completed to a Hilbert space (see Theo-

rem 4.2.2), the Euclidean spaces are, in fact, just the subspaces of Hilbert spaces, with
the induced inner product. However, it is of interest to develop the theory of Euclidean
spaces independently since some additional topological structure is present that has
no simple counterpart in the Hilbert space setting.

We define the antidualℍ× ofℍ to be the vector space of antilinear functionals
ϕ : ℍ → ℂ. We turnℍ× into a locally convex space (see Rudin [252, Chapter 3]) with
theweak-* topology induced by the family of seminorms | ⋅ |ψ with ψ ∈ ℍ defined by
|ϕ|ψ := |ϕ(ψ)| for ϕ ∈ ℍ×. Thus, U ⊆ ℍ× is a neighborhood of ϕ ∈ ℍ× iff there are
finitely many ψk ∈ ℍ such that U contains all ϕ ∈ ℍ× with |ϕ(ψk) − ϕ(ψk)| ≤ 1 for
all k. (The 1 can be replaced by any positive constant since the ψk can be arbitrarily
scaled.) As a consequence, a net1 of vectorsϕℓ ∈ ℍ× converges in theweak-* topology
to the weak-* limit ϕ ∈ ℍ× iff ϕℓ(ψ) → ϕ(ψ) for all ψ ∈ ℍ. Because of (4.2), we may
identify ψ ∈ ℍ with the antilinear functional onℍ, defined by

ψ(ϕ) := ⟨ϕ,ψ⟩ for ϕ ∈ ℍ. (4.3)

This definition turnsℍ canonically into a subspace ofℍ×.

Example 4.1.1. The vector space M(Z) of complex-valued functions ψ : Z → ℂ with
finite support is with the inner product

⟨ϕ,ψ⟩ := ∑
z∈Z

ϕ(z)ψ(z),

a Euclidean space. The antidual M(Z)× is the space of all complex-valued functions
ψ : Z → ℂ, with

ψ(ϕ) := ∑
z∈Z

ϕ(z)ψ(z).

Weak-* convergence inM(Z) is just pointwise convergence.

1 All limits are formulated in terms of nets indexed by a directed set rather than sequences indexed
by nonnegative integers, to cover the possibility of nonseparable spaces. In a separable Hilbert space,
net convergence and sequence convergence are equivalent. In general, there is a difference, and nets
are needed to obtain the correct topology.
For those not familiar with nets—they are generalizations of sequences defining the appropriate form
of the limit in the nonseparable case. In the separable case, nets can always be replaced by sequences.
Thus, readers will grasp the main content if, on first reading, they simply think of nets as being se-
quences.
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Proposition 4.1.2.
(i) Every ψ ∈ ℍ× is the weak-* limit of a net of vectors fromℍ.
(ii) For every weak-* continuous antilinear functional Ψ on a subspace V ofℍ×, there

is a ψ ∈ ℍ such that

Ψ(ϕ) = ϕ(ψ) for ϕ ∈ V .

(iii) Every weak-* continuous antilinear functional on ℍ has a unique extension to a
weak-* continuous antilinear functional onℍ×.

Proof. (i) For any finite-dimensional subspace V ofℍ, there is a unique ψV ∈ V such
thatψ(ϕ) = ⟨ϕ,ψV⟩ for allϕ ∈ V . The collection of finite-dimensional subspaces form
a directed set under inclusion; hence the ψV form a net. The net converges to ψ in the
weak-* topology since for all ϕ ∈ ℍ,

(ψ − ψV )(ϕ) = ⟨ϕ,ψ − ψV⟩ = ⟨ϕ,ψ⟩ − ⟨ϕ,ψV⟩→ 0.

(ii) By continuity, there is a neighborhood N of zero such that

Ψ(ϕ)
 ≤ 1 for all ϕ ∈ N .

By definition of the weak-* topology, there are ψ1, . . . ,ψn ∈ ℍ such that N contains all
ϕ ∈ ℍ with |ϕ(ψk)| ≤ 1 for k = 1, . . . , n. Let A : V → ℂn be the linear mapping with
(Aϕ)k := ϕ(ψk) for all k. IfAϕ = 0 and ε > 0, then ε−1ϕ ∈ N; hence |Ψ(ε−1ϕ)| ≤ 1. Thus,
|Ψ(ϕ)| ≤ ε for all ε > 0, giving Ψ(ϕ) = 0.

This implies that f (Aϕ) := Ψ(ϕ) defines an antilinear functional f on the range
of A. We may extend f to an antilinear functional on ℂn. This has the form f (x) = uTx
with suitable u ∈ ℂn. Now ψ := ∑ ukψk is inℍ and satisfies

ϕ(ψ) = ϕ(∑ ukψk) =∑ ukϕ(ψk) =∑ uk(Aϕ)k ,

ϕ(ψ) =∑ uk(Aϕ)k = u
TAϕ = f (Aϕ) = Ψ(ϕ).

(iii) This follows from (ii) for V = ℍ.

We define the adjoint ψ∗ of ψ ∈ ℍ to be the linear functional on ℍ× that maps
ϕ ∈ ℍ× to

ψ∗ϕ := ϕ(ψ),

and the adjoint ψ∗ of ψ ∈ ℍ× to be the linear functional onℍ that maps ϕ ∈ ℍ to

ψ∗ϕ := ψ(ϕ).

As a consequence,

⟨ϕ,ψ⟩ = ϕ∗ψ for ϕ,ψ ∈ ℍ.
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50 | 4 Euclidean spaces

Moreover, if ϕ,ψ ∈ ℍ× and one of them is inℍ, then

ψ∗ϕ = ϕ∗ψ.

Corollary 4.1.3.
(i) Every linear mapping f : ℍ→ ℂ can be written in the form f = ϕ∗ for some ϕ ∈ ℍ×.
(ii) Every weak-* continuous linear functional f onℍ× can be written in the form f = ϕ∗

for some ϕ ∈ ℍ.

Proof. (i) The mapping ϕ : ℍ → ℂ defined by ϕ(ψ) := fψ is antilinear; hence ϕ ∈ ℍ×.
Since fψ = ϕ(ψ) = ϕ∗ψ, we conclude that f = ϕ∗.

(ii) Follows in the same way from Proposition 4.1.2(ii).

We equip ℍ with the strict topology, the locally convex topology, in which all
antilinear (and hence all linear) functionals are continuous. Therefore, ∗ is an anti-
isomorphism fromℍ× to the space of all linear functionals onℍ, the dual ofℍ with
respect to the strict topology.

Example 4.1.4. In the Euclidean spaceM(Z) defined in Example 4.1.1, a netψℓ inM(Z)
converges toψ ∈ M(Z) in the strict topology iffψ is theweak-* limit, and there is a finite
subset S of Z such that ψℓ(z) = ψ(z) for all z ∈ Z \ S.

4.2 Norm and completion of a Euclidean space

Proposition 4.2.1. The Euclidean norm ‖ψ‖ defined on a Euclidean spaceℍ by

‖ψ‖ := √ψ∗ψ

is positive when ψ ̸= 0. It satisfies for ϕ,ψ ∈ ℍ the Cauchy–Schwarz inequality
ϕ
∗ψ ≤ ‖ϕ‖‖ψ‖, (4.4)

and the triangle inequality

‖ϕ + ψ‖ ≤ ‖ϕ‖ + ‖ψ‖, (4.5)

and for λ ∈ ℂ the relation

‖λψ‖ = |λ|‖ψ‖.

Proof. (4.4) holds for ψ = 0. For ψ ̸= 0 and β := ψ∗ϕ/‖ψ‖2,

0 ≤ (ϕ − βψ)∗(ϕ − βψ) = ‖ϕ‖2 − 2 Re(βϕ∗ψ) + |β|2‖ψ‖2 = ‖ϕ‖2 − ϕ
∗ψ

2
/‖ψ‖2,

so that (4.4) holds also in this case. The triangle inequality now follows from

‖ϕ + ψ‖2 = ‖ϕ‖2 + 2 Reϕ∗ψ + ‖ψ‖2 ≤ ‖ϕ‖2 + 2‖ϕ‖‖ψ‖ + ‖ψ‖2 = (‖ϕ‖ + ‖ψ‖)2.

The final equation is obvious.
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4.2 Norm and completion of a Euclidean space | 51

Amapping f : ℍ→ ℂ is called bounded if there is a constant C such that |f (ψ)| ≤
C‖ψ‖ for all ψ ∈ ℍ. A Cauchy net inℍ consists of a net ψℓ inℍ, such that for every
ε > 0 there is an index N such that ‖ψj − ψk‖ ≤ ε for j, k ≥ N . It is called bounded if
supℓ ‖ψℓ‖ < ∞. A Hilbert space is a Euclidean space containing with each bounded
Cauchy net its weak-* limit.

Theorem 4.2.2. The setℍ of all bounded antilinear functionals onℍ is a Hilbert space,
and we have

ℍ ⊆ ℍ ⊆ ℍ×. (4.6)

If a net ψℓ inℍ has a weak-* limit ψ ∈ ℍ, then ‖ψℓ − ψ‖→ 0.

Proof. Clearlyℍ is a subspace ofℍ×. The Cauchy–Schwarz inequality says that, as an
antilinear functional, ψ ∈ ℍ is bounded. Thus,ℍ containsℍ, and (4.6) holds.

Nowsuppose thatϕ,ψ ∈ ℍand thatϕ = limϕj,ψ = limψj for netswithϕj,ψj ∈ ℍ.
Then

ϕ
∗
j ψj − ϕ

∗
kψk
 =
(ϕj − ϕk)

∗ψj + ϕ
∗
k (ψj − ψk)

 ≤ ‖ϕj − ϕk‖‖ψj‖ + ‖ϕk‖‖ψj − ψk‖

converges to zero as j, k →∞. Therefore, the ϕ∗j ψj form a Cauchy net and the limit

ϕ∗ψ := lim
ℓ
⟨ϕℓ,ψℓ⟩ (4.7)

exists. A similar argument shows that the limit is independent of the choice of the nets.
We take (4.7) as the definition of the inner product inℍ. It is easy to see that the inner
product is Hermitian and linear in the second argument. Therefore,ℍ is a Euclidean
space. In particular, Proposition 4.2.1 applies withℍ in place ofℍ.

To show completeness, let ϕℓ be a bounded Cauchy net in ℍ. Then for every
ψ ∈ ℍ,

ϕ
∗
ℓψ − ϕ

∗
kψ
 =
(ϕℓ − ϕk)

∗ψ ≤ ‖ϕℓ − ϕk‖‖ψ‖→ 0 for k, ℓ→∞.

Hence, the ϕ∗ℓψ form a Cauchy net in ℂ and converge. Thus,

f (ψ) := lim
ℓ→∞

ϕ∗ℓψ

defines a map f : ℍ→ ℂ. Since for μ, μ ∈ ℂ and ψ,ψ ∈ ℍ,

f (μψ + μψ) − μf (ψ) − μf (ψ) = lim
ℓ→∞
(ϕ∗ℓ (μψ + μ

ψ) − μϕ∗ℓψ − μ
ϕ∗ℓψ
) = 0,

f is linear, and by Corollary 4.1.3(i), f = ϕ∗ for some ϕ ∈ ℍ×. Clearly, ϕ is the weak-*
limit of the ϕℓ. Since the Cauchy net is bounded, ϕ is bounded, too; hence ϕ ∈ ℍ.
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To prove the final statement, we note that

‖ψℓ − ψ‖
2 = (ψℓ − ψ)

∗(ψℓ − ψm) + (ψℓ − ψ)
∗(ψm − ψ)

≤ ‖ψℓ − ψ‖‖ψℓ − ψm‖ + (ψℓ − ψ)
∗(ψm − ψ).

The first term goes to zero due to the Cauchy property, and the second term goes to
zero due to weak-* convergence.

Corollary 4.2.3 (Riesz representation theorem). For every norm-continuous linear
functional f onℍ, there is a vector ψ ∈ ℍ such that

f (ϕ) = ψ∗ϕ for all ϕ ∈ ℍ. (4.8)

Proof. The mapping ψ : ℍ→ ℂ defined by ψ(ϕ) := f (ϕ) for ϕ ∈ ℍ is antilinear, hence
belongs toℍ.

We call ℍ the completion of ℍ. If ℍ is finite-dimensional, then ℍ = ℍ = ℍ×

by standard arguments, and all topologies considered are equivalent. Ifℍ is infinite-
dimensional, then we usually2 have ℍ ̸= ℍ ̸= ℍ×. For example, the space ℍ :=
C([−1, 1]) of continuous functions on [−1, 1] has as antilinear functionals not only all
elements of the Hilbert spaceℍ = L2([−1, 1]) of square-integrable functions on [−1, 1],
but also all function evaluationmaps, corresponding to distributions. All these are el-
ements of the antidualℍ×. In infinite dimensions, the norm topology inℍ is weaker
than the strict topology inℍ, but stronger than the weak-* topology inℍ×.

By now, ϕ∗ψ is defined whenever ϕ,ψ ∈ ℍ×, and either one of the two is in ℍ,
or both are inℍ. Thus, we have a partial binary operation ∗ onℍ×, called the partial
inner product (PIP). It satisfies

ϕ∗ψ = ψ∗ϕ. (4.9)

Unless ℍ is finite-dimensional, the partial inner product is not everywhere defined.
(For example, in the antidual of C([−1, 1]), the inner product of two delta distributions
at the same point is not defined.) Proposition 4.1.2(i) implies thatℍ is dense inℍ×. In
particular,ℍ× is a positive definite PIP space in the sense of Antoine & Trapani [11].

Example 4.2.4. The completion M(Z) of the Euclidean space M(Z), discussed in Ex-
amples 4.1.1 and 4.1.4, is the Hilbert space of functions ψ : Z → ℂ with countable
support and finite∑z∈Z |ψ(z)|

2. The inner product of ϕ,ψ ∈ M(Z) is given by the abso-
lutely convergent countable sum ϕ∗ψ := ∑z∈Z ϕ(z)ψ(z).

2 This applies except when ℍ is already an infinite-dimensional Hilbert space, in which case ℍ =
ℍ ̸= ℍ×.
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4.3 Linear mappings between Euclidean spaces

An isometry from a Euclidean space U to a Euclidean space V is a linear map A :
U → V , such that

‖Aψ‖ = ‖ψ‖ for all ψ ∈ U .

Isometries are injective since Aψ = 0 implies ‖ψ‖ = 0, and hence ψ = 0. An isomor-
phism from U to V is a surjective isometry A : U → V . Its inverse is an isomorphism
from V to U . If such an isomorphism exists, the Euclidean spaces U and V are called
isometric or isomorphic.

IfU and V are (complex) topological vector spaces, we write Lin(U ,V) for the vec-
tor space of all continuous linear mappings from U to V , and LinU for Lin(U ,U). We
identify V with the space Lin(ℂ,V) via

ψα := αψ for α ∈ ℂ, ψ ∈ V .

Proposition 4.3.1. Let U and V be Euclidean spaces.
(i) For any linear map A : U → V×, the mapping A∗ϕ : U → ℂ, defined for ϕ ∈ V by

(A∗ϕ)(ψ) := (Aψ)∗ϕ for ψ ∈ U ,

is an antilinear functional and defines an operator A∗ : V → U× with

(Aψ)∗ϕ = ψ∗(A∗ϕ),

called the adjoint of A.
(ii) Any linear map A : U → V× is continuous, that is, A ∈ Lin(U ,V×).
(iii) The mapping ∗ that maps A to A∗ is an antilinear mapping from Lin(U ,V×) to

Lin(V ,U×) and satisfies

A∗∗ = A.

Proof. (i) is obvious.
(ii) We need to show that for every weak-* neighborhood N of 0 in V×, there is

a strict neighborhood M of 0 in U such that Aψ ∈ N for all ψ ∈ M. By definition of
the weak-* topology, there are ϕ1, . . . ,ϕn ∈ V such that N contains all ϕ ∈ V× with
|ϕ(ϕk)| ≤ 1 for k = 1, . . . , n. The setM of all ψ ∈ U with |ψ(A∗ϕk)| ≤ 1 for k = 1, . . . , n is
a strict neighborhood of 0 in U and has the required property.

(iii) The dependence ofA∗ϕ onϕ is linear; thus the adjointA∗ is a linear operator.
By (i), A∗ ∈ Lin(V ,U×). Corollary 4.1.3(ii) gives V×× = V and U×× = U . Hence, A∗ :
V → U× is given by A∗ψ(ϕ) = (Aϕ)∗ψ for all ψ ∈ V and ϕ ∈ U . Thus, we have for all
ϕ ∈ U and ψ ∈ V ,

A∗∗ϕ(ψ) = (A∗ψ)∗ϕ = Aϕ(ψ),

which implies that A∗∗ = A.
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Since V ⊆ V×, the adjoint is also defined for A ∈ Lin(U ,V) and then makes sense
as a mapping A∗ ∈ Lin(V×,U×), and we have

A∗B∗ = (BA)∗ if A ∈ Lin(U ,V), B ∈ Lin(V ,W×).

We write

Lin×ℍ := Lin(ℍ,ℍ×)

for the vector space of continuous linear operators from a Euclidean space ℍ to its
antidual. Sinceℍ×× = ℍ by Proposition 4.1.2(v), we conclude:

Corollary 4.3.2. If A ∈ Lin×ℍ, then A∗ ∈ Lin×ℍ, and we have

ϕ∗Aψ = (ϕ∗A)ψ = ϕ∗(Aψ) = (A∗ϕ)∗ψ for ϕ,ψ ∈ ℍ. (4.10)

Thus, ϕ∗Aψ defines a sesquilinear form onℍ.

Here ϕ∗ is treated as the adjoint ϕ∗ : ℍ× → ℂ of ϕ : ℂ → ℍ under the identifica-
tion V = Lin(ℂ,V). We call A ∈ Lin×ℍ Hermitian if A∗ = A; then ϕ∗Aψ = ψ∗Aϕ, so
that the associated sesquilinear form is Hermitian.

4.4 Functions of positive type

A complex n×nmatrix G isHermitian if Gjk = Gkj for j, k = 1, . . . , n, positive semidef-
inite if u∗Gu ≥ 0 for all u ∈ ℂn, and conditionally semidefinite if u∗Gu ≥ 0 for all
u ∈ ℂn with∑k uk = 0.

Let Z be a nonempty set. We call a function F : Z × Z → ℂ of positive type (that
is, conditionally positive) over Z if, for every finite sequence z1, . . . , zn in Z, theGram
matrix of z1, . . . , zn, that is, the n × n-matrix G with entries

Gjk = F(zj, zk), (4.11)

is Hermitian and positive semidefinite (that is, conditionally semidefinite). In partic-
ular, every function of positive type is conditionally positive.

The basic intuition for the above definition comes from the following examples.
(Note that z and z are unrelated points.)

Proposition 4.4.1. Let Z be a subset of a Euclidean space ℍ. Then the functions
F, F, F : Z × Z → ℂ, defined by

F(z, z) := z∗z, F(z, z) := z ∗z, F(z, z) := Re z∗z,

are of positive type.
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Proof. Let G,G,G be the Gram matrices computed with F, F, F, respectively.
Clearly, G is Hermitian; it is positive semidefinite since

u∗Gu =∑
j,k
ujz
∗
j zkuk =


∑
k
zkuk


2
≥ 0.

G = G and G = 1
2 (G + G) are easily seen to be Hermitian and positive semidefinite,

too.

The Moore–Aronszejn theorem (Theorem 4.6.1) provides a converse of Proposi-
tion 4.4.1.

Proposition 4.4.2. If F : Z × Z → ℂ is conditionally positive. Then, for any function
f : Z → ℂ and any γ ≥ 0, the function F̃ : Z × Z → ℂ, defined by

F̃(z, z) := f (z) + f (z) + γF(z, z) for z, z ∈ Z, (4.12)

is conditionally positive.

Proof. Let G, G̃ be the Gram matrices computed with F and F̃, respectively. Clearly, G̃
is Hermitian, and

G̃jk = f (zj) + f (zk) + γGjk ;

hence∑ℓ uℓ = 0 implies

u∗G̃u =∑
j,k
uj(f (zj) + f (zk) + γGjk)uk = γ∑

j,k
ujGjkuk = γu

∗Gu ≥ 0.

Thus, G̃ is conditionally semidefinite.

Proposition 4.4.3. Let Z be a subset of a Euclidean space ℍ. Then, for any function
g : Z → ℂ, the function F̃ : Z × Z → ℂ, defined by

F̃(z, z) := g(z) + g(z) − z − z

2 for z, z ∈ Z, (4.13)

is conditionally positive.

Proof. This follows from Propositions 4.4.1 and 4.4.2 since F̃(z, z) = f (z) + f (z) +
F(z, z), where f (z) = g(z) − ‖z‖2.

For appropriate converses of Propositions 4.4.2 and 4.4.3, see the theorems by
Schoenberg and by Menger in Section 4.9.
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4.5 Constructing functions of positive type

In this section, we discuss a toolkit for the construction of such explicit functions of
positive type from simpler ingredients. We provide a number of constructions that al-
low one to verify positivity properties. For further constructions and numerous exam-
ples in the form of exercises see Berg et al. [34].

Proposition 4.5.1. For every family ϕz (z ∈ Z) of vectors ϕz in a Euclidean vector
spaceℍ, the function F, defined by

F(z, z) := ⟨ϕz ,ϕz⟩,
is of positive type.

Proof. The corresponding matrix G from (4.11) is clearly Hermitian, and

x∗Gx =∑
j,k
xjGjkxk =∑

j,k
xj⟨ϕzj ,ϕzk ⟩xk =


∑
k
xkϕzk



2
≥ 0.

Basic examples of functions of positive type arise from the above constructions by
choosing the family of ϕz in such a way that their inner products can be expressed in
closed form. Others come from a number of constructions, which modify or combine
functions of positive type.

Proposition 4.5.2.
(i) Every positive semidefinite Hermitian form on a complex vector space Z is of pos-

itive type.
(ii) If F is of positive type over Z and Y ⊆ Z, then the restriction F|Y of F to Y × Y is

of positive type.
(iii) If F0 is of positive type over Z0 and u : Z → Z0, then

F(z, z) := F0(u(z), u(z
))

is of positive type.
(iv) If F is of positive type over Z, γ > 0, and ν : Z → ℂ, then

F(z, z) := γν(z)F(z, z)ν(z)

is of positive type. In particular, if F(z, z) > 0 for all z, then the normalization
Fnorm of F, defined by

Fnorm(z, z
) :=

F(z, z)
√F(z, z)F(z, z)

,

is of positive type, and satisfies Fnorm(z, z) = 1 for all z.
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(v) If L is a countable set and each Fℓ (ℓ ∈ L) is of positive type over Z, then, for
arbitrary positive weights wℓ, for which

F(z, z) := ∑
ℓ∈L

wℓFℓ(z, z
)

is everywhere defined, F is of positive type.
(vi) Let Z be the disjoint union of a family of sets Zℓ, indexedby ℓ ∈ L. If Fℓ : Zℓ×Zℓ → ℂ

is of positive type for all ℓ ∈ L, then the function F : Z × Z → ℂ (defined by

F(z, z) := {
Fℓ(z, z) if z, z ∈ Zℓ,
0 otherwise)

is of positive type.
(vii) If the Fℓ (ℓ = 0, 1, 2 . . .) are of positive type over Z and the limit

F(z, z) := lim
ℓ→∞

Fℓ(z, z
)

exists for z, z ∈ Z, then F is of positive type.
(viii) If μ is a positive measure on a set L and each Fℓ (ℓ ∈ L) is of positive type over Z,

then

F(z, z) := ∫
L

dμ(ℓ)Fℓ(z, z
),

if everywhere defined, is of positive type.
(ix) Let F0 : Z0 × Z0 → ℂ be of positive type, let dμ be a positive measure on a set L. If

u : Z × L→ Z0 is such that the integral

F(z, z)(ℓ) := ∫
L

dμ(ℓ)F0(u(z, ℓ), u(z
, ℓ))

exists for all ℓ ∈ L and z, z ∈ Z, then F is of positive type on Z.

Proof. (i)–(viii) are straightforward, and (ix) follows from (iii) and (viii).

Note thatmany examples of interest are analytic in the second argument. Unfortu-
nately, this property does not persist under normalization as in Proposition 4.5.2(iv).

It is easily checked that all constructions of Proposition 4.5.2 produce condition-
ally positive functions when the ingredients are only required to be conditionally pos-
itive rather than of positive type.

Theorem 4.5.3 (Schur [271]).
(i) If F1 is of positive type on Z1 and F2 is of positive type on Z2, then

F((z1, z2), (z

1, z

2)) := F1(z1, z


1)F2(z2, z


2)

is of positive type on Z = Z1 × Z2.
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(ii) If F1 and F2 are of positive type, then the pointwise product

F(z, z) := F1(z, z
)F2(z, z

)

is of positive type.

Proof. (i) For t = 1, 2, the Gram matrix Gt of zt1, . . . , ztn, computed with respect to Ft is
positive semidefinite, hence has a Cholesky factorization Gt = R∗t Rt . The Grammatrix
of (z11, z21), . . . , (z1n, z2n), computed with respect to F, has entries

Gjk = G1jkG2jk = (∑
ℓ
R1ℓjR1ℓk)(∑

m
R2mjR2mk)

= ∑
ℓ,m

R1ℓjR2mjR1ℓkR2mk ,

so that

u∗Gu =∑
j,k
ujGjkuk = ∑

ℓ,m


∑
j
ujR1ℓjR2mj



2
≥ 0.

Thus, G is positive definite; proving that F is of positive type.
(ii) follows from (i) and Proposition 4.5.2(iii) by mapping to the diagonal.

Theorem 4.5.4.
(i) All pointwise powers

Fn(z, z) := F(z, z)n (n = 1, 2, . . . )

of a function F of positive type are of positive type.
(ii) If F is of positive type, then for any β ≥ 0, the function Fβ (defined by

Fβ(z, z
) := eβF(z,z

))
is of positive type, too.

(iii) Write B(0; 1) := {x ∈ ℂ | |x| < 1} for the open complex unit disk. If F is of positive
type and |F(z, z)| < c <∞ for all z, z ∈ Z, then

Finv(z, z
) :=

1
c − F(z, z)

is of positive type, too. (This is related to Nevanlinna–Pick interpolation theory; see
Agler & McCarthy [1].)

Proof. (i) follows from Theorem 4.5.3(ii) by induction. (ii) and (iii) then follow from
Proposition 4.5.2(v) since ex = ∑∞0

xn
n! for x ∈ ℂ and

1
c−x = ∑

∞
0

xn
cn+1 for |x| < c, and

constant functions with positive values are of positive type.

This theorem is related to the Berezin–Wallach set discussed in Section 4.10.
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4.6 The Moore–Aronszajn theorem

The remaining sections of this chapter provide, in a physics-oriented terminology and
with full proofs, a self-contained synopsis (and sometimes slight generalization) of
a number of classical results from the literature about functions of positive-type and
reproducing kernel Hilbert spaces.

This section discusses the Moore–Aronszajn theorem, telling how to reconstruct
a Hilbert space from a spanning set of vectors, whose inner product is known, and the
properties that must be satisfied for arbitrarily assigned formal inner products to pro-
duce aHilbert space. It leads in the next chapter to the existence of the quantum space
of a coherent space, hence is of fundamental importance. Many other constructions
in algebraic quantummechanics (for example, the GNS construction of Hilbert spaces
from states in C∗-algebras, or theWightman reconstruction theorem in quantum field
theory) are direct consequences of this theorem.

TheMoore–Aronszajn theorem is due to Aronszajn [16] (1943), who attributed3 it
to Moore (1935).

Theorem 4.6.1 (Moore, Aronszajn). Let K : Z × Z → ℂ be of positive type. Then there
is a unique Hilbert space ℚ of complex-valued functions on Z with the Hermitian inner
product ⟨⋅, ⋅⟩ (antilinear in the first component) such that the following properties hold:
(i) ℚ contains the functions qz : Z → ℂ, defined for z ∈ Z by

qz(x) := K(x, z) = K(z, x). (4.14)

(ii) The spaceℚ of finite linear combinations of the qz is dense inℚ.
(iii) The following relations hold:

⟨qz , qx⟩ = K(z, x), (4.15)
ψ(z) = ⟨qz ,ψ⟩ for all ψ ∈ ℚ. (4.16)

(iv) For each z ∈ Z, the linear functional ιz , defined by

ιzψ := ψ(z), (4.17)

is continuous.

3 Aronszajn [15, Théorème 2] states the theorem and gives a detailed proof (in French), but his later
English paper [16] states the theorem on page 344 and attributes it toMoore. He citesMoore [186] (and
a very short notice from 1916) on page 338, but the theorem does not seem to be in one of these ref-
erences. (Moore discusses in Chapter III functions of positive type under the name positive Hermitian
matrices—see the statement at the top of page 182—but does not construct a Hilbert space from them.)
Faraut & Korányi [85, page 170] ascribes the theorem to Bergman [35] (1933), but the theorem does
not seem to be there either. Kolmogorov [163, Lemma 2] (1941) contains the result for the special case,
where Z is countable.
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Proof. The vector spaceℚ spanned by the qz consists of all linear combinations

f̂ :=∑
z
f (z)qz (4.18)

with f in the space 𝔽 of all maps f : Z → ℂ for which all but finitely many values f (z)
vanish. Thus, the sum is finite, and by (4.14), function values can be calculated by

f̂ (x) =∑
z
f (z)qz(x) =∑

z
K(x, z)f (z). (4.19)

Since it might be possible that a function ψ ∈ ℚ can be written in several ways in the
form (4.18), the definition of an inner product onℚ requires some care. The mapping
defined on 𝔽 × 𝔽 by

(g, f ) :=∑
x
g(x)f̂ (x) =∑

x,z
g(x)K(x, z)f (z) (4.20)

is a Hermitian form since

(g, f ) =∑
x,z

g(x)K(x, z)f (z) =∑
x,z

f (z)K(z, x)g(x) = (f , g).

Now

(g, f ) = (f , g) =∑
x
f (x)ĝ(x) =∑

z
ĝ(z)f (z). (4.21)

If ĝ = û and f̂ = v̂, then

(g, f ) =∑
z
ĝ(z)f (z) =∑

z
û(z)f (z) = (u, f )

=∑
x
u(x) f̂ (x) =∑

x
u(x)v̂(x) = (u, v).

Therefore, (g, f ) depends only on the functions ĝ and f̂ . Thus,

⟨ψ,ψ⟩ := (g, f ) if ψ = ĝ, ψ = f̂

defines a Hermitian form ⟨⋅, ⋅⟩ onℚ satisfying

⟨ĝ, f̂ ⟩ = (g, f ). (4.22)

The function gz ∈ 𝔽 defined (for arbitrary but fixed z ∈ Z) by gz(x) = 1 if x = z and
gz(x) = 0 otherwise, satisfies

ĝz = qz (4.23)

Brought to you by | Stockholm University Library
Authenticated

Download Date | 10/28/19 5:02 PM



4.7 Reproducing kernel Hilbert spaces and Mercer’s theorem | 61

by (4.18), hence by (4.21),

⟨qz , f̂ ⟩ = ⟨ĝz , f̂ ⟩ = (g, f ) =∑
x
gz(x) f̂ (x) = f̂ (z).

Since by definition of ℚ any ψ ∈ ℚ can be written as ψ = f̂ , we conclude (4.16). Spe-
cialization to ψ = qx and using (4.14) (with z and x interchanged) yield (4.15).

Since K is of positive type, (f , f ) ≥ 0 for all f ∈ 𝔽. Therefore, the form is positive
semidefinite on𝔽. In particular, the Cauchy–Schwarz inequality |(f , f )|2 ≤ (f , f )(f , f )
holds. It implies that (f , f ) = 0 only if (f , f ) = 0 = (f , f ) for all f , and (4.18) then shows
that f̂ (z) = 0 for all z. Hence, f̂ = 0. Therefore, the Hermitian form ⟨⋅, ⋅⟩ is positive
definite, hence defines a Hermitian inner product onℚ. Thus,ℚ is a Euclidean space.
The completion with respect to the norm

‖ψ‖ := √⟨ψ,ψ⟩

(which can be done constructively using Theorem 4.2.2) gives the desired Hilbert
space, and a limiting argument shows that (4.16) holds in general: If ψ ∈ ℚ, there is a
net of ψj ∈ ℚ, converging to ψ in the norm, and

⟨qz ,ψ⟩ − ψj(z)
 =
⟨qz ,ψ⟩ − ⟨qz ,ψj⟩

 =
⟨qz ,ψ − ψj⟩

 ≤ ‖qz‖‖ψ − ψj‖→ 0.

Hence, ψ(z) = limj ψj(z)→ ⟨qz ,ψ⟩.
(iv) Since ιzψ = ψ(z) = ⟨qz ,ψ⟩, we have ‖ιz‖ = ‖qz‖. Thus, ιz is bounded and hence

continuous.
The uniqueness ofℚ is clear from the construction.

4.7 Reproducing kernel Hilbert spaces and Mercer’s theorem

Proposition 4.7.1. Let ψα (α ∈ I) be an orthonormal basis forℚ. Then

K(z,w) = ∑
α∈I

ψα(z)ψα(w). (4.24)

Proof. By the polarized version of the Parseval identity, Theorem5.27 of Folland [90],
we have

qw = ∑
α∈I
⟨ψα, qw⟩ψα = ∑

α∈I
ψα(w)ψα

for all w ∈ Z. Hence, for all z,w ∈ Z,

K(z,w) = ⟨qz , qw⟩ = ⟨qz ,∑
α∈I

ψα(w)ψα⟩ = ∑
α∈I
⟨qz ,ψα⟩ψα(w) = ∑

α∈I
ψα(z)ψα(w),

which implies (4.24).
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A reproducing kernel Hilbert space is a Hilbert space𝕂 of functions on a set Z
together with a reproducing kernel K : Z × Z → ℂ such that the functions kz (z ∈ Z),
defined by

kz(x) := K(x, z), (4.25)

span a space dense in𝕂 and satisfy

ψ(z) = k∗z ψ for all ψ ∈ 𝕂, z ∈ Z. (4.26)

Thus (4.16) says thatℚ is a reproducing kernel Hilbert space with reproducing kernel
K and kz = qz .

Proposition 4.7.1 is related to Mercer’s theorem (Mercer [185]), which represents
certain reproducing kernels by an infinite sum of the form

K(z,w) = ∑
α∈I

λαϕα(z)ϕα(w),

with positive real numbers λα and functions ϕα satisfying additional properties. Pre-
cise statements of Mercer’s theorem and its generalizations (for example, Ferreira
& Menegatto [86]) require additional structure on Z and K concerning measurabil-
ity and continuity, hence are not valid in the generality discussed here. A discussion
of measure theoretic properties of coherent states and associated overcompleteness
relations will be given elsewhere.

4.8 Theorems by Bochner and Kreĭn
Bochner [38, Satz 4] proved the following optimality result for qx:

Theorem 4.8.1 (Bochner). Let K : Z × Z → ℂ be of positive type, and let ℚ be the
space constructed in the Moore–Aronszejn theorem (Theorem 4.6.1). If x ∈ Z satisfies
K(x, x) ̸= 0, then

min{ψ∗ψ | ψ ∈ ℚ, ψ(x) = α} = |α|
2

K(x, x)
.

The minimum is attained just for ψ = α
K(x,x)qx. In particular, if α = K(x, x), then the

minimum is attained precisely at qx.

Proof. This is trivial for α = 0. For α ̸= 0, we may rescale the assertion. Thus, it is
enough to prove the case α = K(x, x). In this case,

ψ∗ψ = ⟨ψ − qx ,ψ − qx⟩ + 2 Re⟨qx ,ψ⟩ − ⟨qx , qx⟩
= ⟨ψ − qx ,ψ − qx⟩ + 2 Reψ(x) − K(x, x)

= ‖ψ − qx‖
2 + K(x, x) ≥ K(x, x) = α,

with equality iff ψ − qx = 0.
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Our next result, a variant of Kreĭn [167], characterizes which functions ψ ∈ ℚ×

belong already to the Hilbert spaceℚ.

Theorem 4.8.2 (Kreĭn). Let K : Z × Z → ℂ be of positive type and ψ : Z → ℂ. Define the
function Kε : Z × Z → ℂ by

Kε(z, z
) := K(z, z) − εψ(z)ψ(z).

(i) If ψ ∈ ℚ and 0 < ε ≤ ‖ψ‖−2, then Kε is of positive type.
(ii) If Kε is of positive type for some ε > 0, then ψ ∈ ℚ.

Proof. (i) Hermiticity is obvious. To show that Kε is of positive type, we need to show
for any finite sequence of complex numbers uk and points zk ∈ Z the nonnegativity of
the sum

σ :=∑
j,k
ujKε(zj, zk)uk =∑

j,k
uj⟨qzj , qzk ⟩uk − ε∑

j,k
ujψ(zj)ψ(zk)uk ,

where we used (4.15). Writing

q :=∑
k
qzkuk ,

we find that

⟨ψ, q⟩ =∑
k
⟨ψ, qzk ⟩uk =∑

k
⟨qzk ,ψ⟩uk =∑

k
ψ(zk)uk ;

hence

σ = ‖q‖2 − ε⟨ψ, q⟩

2
≥ ‖q‖2 − ε‖ψ‖2‖q‖2 ≥ 0.

(ii) In this case, with 𝔽 and f̂ as in the proof of the Moore–Aronszejn theorem (Theo-
rem 4.6.1), we consider the antilinear mapping Ψ : 𝔽→ ℂ, defined by

Ψ(f ) := ∑
z∈Z

f (z)ψ(z).

Since Kε is of positive type, we have

0 ≤ ∑
z,z f (z)Kε(z, z)f (z) = ∑z,z f (z)K(z, z)f (z) − ε∑z,z f (z)ψ(z)ψ(z)f (z)
= (f , f ) − εΨ(f )


2
= ‖f̂ ‖2 − εΨ(f )


2

by definition of Kε, (4.20), (4.22), and the definition of Ψ. Therefore,

Ψ(f )
 ≤ ε
−1/2‖f̂ ‖.
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In particular, f̂ = 0 impliesΨ(f ) = 0. Therefore,Ψdefines a unique antilinearmapping
ψ : ℚ → ℂ with ψ(f̂ ) = Ψ(f ) for all f ∈ 𝔽. By the above, |(ψ f̂ )| ≤ ε−1/2‖f̂ ‖. Thus, ψ is
bounded. By Theorem 4.2.2, Ψ̂ belongs to

Ψ̂(ϕ) = ⟨ϕ,ψ⟩ for all ψ ∈ ℚ.

Since by (4.23) and (4.16),

ψ(z) = Ψ(gz) = Ψ̂(ĝz) = Ψ̂(qz) = ⟨qz ,ψ
⟩ = ψ(z) (4.27)

for all z ∈ Z, we conclude that ψ = ψ ∈ ℚ.

4.9 Theorems by Schoenberg and Menger

In this section, we prove the promised converse of Propositions 4.4.2–4.4.3.

Theorem 4.9.1 (Schoenberg [267, p. 49]). If F is conditionally positive, then the func-
tion Pa (defined for any a ∈ Z by

Pa(z, z
) := F(z, z) − F(z, a) − F(a, z) + F(a, a)) (4.28)

is of positive type. Conversely, if a map F : Z ×Z → ℂ is such that if Pa is of positive type
for some a ∈ Z, then F is conditionally positive.

Proof. LetG, G̃ be the Grammatrices of z1, . . . , zn computedwith F and Pa, respectively.
Then

G̃ = G − g1∗ − 1g∗ + γ11∗,

where 1 is the all-one column vector, g the column vector with components gj :=
F(zj, a), and γ := F(a, a). The Gram matrix of z1, . . . , zn, a computed with F is therefore

G := (G g
g∗ γ
) .

Now v ∈ ℂn+1 satisfies ∑j vj = 0 iff, for some u ∈ ℂn,

v = ( u
−s
), s = 1∗u,

and then

v∗Gv = ( u
−s
)
∗
(
G g
g∗ γ
)(

u
−s
) = u∗Gu − u∗gs − sg∗u + γss

= u∗(G − g1∗ − 1g∗ + γ1 1∗)u = u∗G̃u.

This shows that F is conditionally positive iff all G̃ are positive semidefinite. That is,
iff Pa is of positive type for some a and hence for all a.
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Theorem 4.9.2. Amap F : Z × Z → ℂ is conditionally positive iff there is an embedding
z → qz of Z into a Euclidean spaceℍ such that

F(z, z) = f (z) + f (z) + q∗z qz (4.29)

holds for some f : Z → ℂ.

Proof. (i) Suppose that F is conditionally positive. Fix a and define Pa by (4.28). By
Theorem 4.9.1, Pa is of positive type. Hence, the Moore–Aronszejn theorem (Theo-
rem 4.6.1) gives an embedding z → qz into a Hilbert space such that

Pa(z, z
) = q∗z qz , (4.30)

applying (4.15) of the theorem to Pa in place of K. The definition of Pa then implies

F(z, z) − F(z, a) − F(a, z) + F(a, a) = q∗z qz .
Putting z = z = a gives q∗aqa = 0. Hence, qa = 0. One now easily verifies that

D(z, z) := F(z, z) − q∗z qz
satisfies D(z, z) = D(z, z) and

D(z, z) − D(z, a) − D(a, z) + D(a, a) = 0.

This implies that D(z, z) = f (z) + f (z) with

f (z) := D(a, z) − 1
2
D(a, a).

Therefore (4.29) holds.
(ii) Conversely, if (4.29) holds, then (4.30) and (4.28) imply that Pa(z, z) = ⟨qz −

qa, qz − qa⟩. Hence, Pa is of positive type. By Schoenberg’s Theorem 4.9.1, F is condi-
tionally positive.

The following converse of Proposition 4.4.3 is related to results by Menger [184]
in the context of characterizing metric spaces embeddable into a finite-dimensional
real vector space.

Corollary 4.9.3. A map F : Z × Z → ℂ, satisfying F(z, z) = F(z, z) for z, z ∈ Z, is
conditionally positive iff there is an embedding z → qz of Z into a real Euclidean space
such that

F(z, z) = g(z) + g(z) − ‖qz − qz‖2 (4.31)

holds for some g : Z → ℝ.
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Proof. If there is such an embedding, then F is conditionally positive by Proposi-
tion 4.4.3. Conversely, suppose that F is conditionally positive. Then 1

2F is also condi-
tionally positive. By Theorem 4.9.2, there is an embedding z → qz of Z into a complex
Euclidean spaceℍ such that

1
2
F(z, z) = f (z) + f (z) + q∗z qz

holds for some f : Z → ℂ. Since we assumed F(z, z) = F(z, z) for z, z ∈ Z, f (z) is real.
Thus, the inner productsK(z, z) = q∗z qz are also real, and the qz span a real Euclidean
space. Substitution of g(z) = 2f (z) + ‖qz‖2 now shows that (4.31) holds.

4.10 The Berezin–Wallach set

Many coherent products of interest have the exponential form discussed in the theo-
rem that follows. In the case where F takes only finite values and is zero on the diag-
onal it is due to Schoenberg [266], to Herz [127, Proposition 6] where F takes only
finite values, and to Horn [139] in the general case. The present proof is much shorter
than Horn’s.

To be able to formulate the results, we put

e−∞ := 0,

and call a function F : Z×Z → ℂ∪ {−∞} conditionally positive if either (i) there is an
equivalence relation ≡ on Z such that F is conditionally positive on each equivalence
class, and F(z, z) = −∞ whenever z ̸≡ z, or (ii) F takes only infinite values. This
reduces to the original definition if the value −∞ is not attained, which holds iff there
is only one equivalence class.

Theorem 4.10.1.
(i) If F : Z × Z → ℂ ∪ {−∞} is conditionally positive, then (for all β > 0)

K(z, z) := eβF(z,z
) (4.32)

is of positive type.
(ii) Let F : Z × Z → ℂ ∪ {−∞}. If there is a sequence of positive numbers βk converging

to 0 such that

Kk(z, z
) := eβkF(z,z

)
is of positive type for all k, then F is conditionally positive.

Proof. (i) If F takes only finite values, then Theorem 4.9.1 shows that (for any z0 ∈ Z),
the function F̃, defined by

F̃(z, z) := β(F(z, z) − F(z, z0) − F(z0, z
) + F(z0, z0)),
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is of positive type. Theorem 4.5.4 therefore implies that K(z, z) := eF̃(z,z
) defines a

function K of positive type. Rescaling this by Proposition 4.5.2(iv), we see that (4.32)
is of positive type, too. If F takes infinite values only, K is identically zero, and hence
of positive type. If F takes finite and infinite values, the previous argument may be
applied to the restriction ofK to each equivalence class, and shows that this restriction
is of positive type. Then Proposition 4.5.2(vi) implies that K itself is of positive type.

(ii) We may assume, without loss of generality, that Z cannot be decomposed as
in Proposition 4.5.2(vi).

Case 1: K(z, z) ̸= 0 for all z, z ∈ Z. We fix a ∈ Z and use Proposition 4.5.2(iv) to
rescale K := eβF (consistently for all β) such that all K(a, z) = 1. Hence, all F(a, z)
vanish. Theorem 4.9.1, applied with Kk in place of F, implies that the map Pa :
Z × Z → ℂ, defined by

Pa(z, z
) = Kk(z, z

) − Kk(z, a) − Kk(a, z
) + Kk(a, a) = Kk(z, z

) − 1,

is of positive type. Therefore, the functions Fk, defined by

Fk(z, z
) :=

Kk(z, z) − 1
βk

=
eβkF(z,z

) − 1
βk

= F(z, z) + βkF(z, z
)
2
+ O(βk)

2,

are also of positive type. Since βk → 0, Fk(z, z) → F(z, z) for k → ∞. By Proposi-
tion 4.5.2(vii), F is of positive type. Undoing the scaling and using Theorem 4.9.1 now
prove that F is conditionally positive.

Case 2: K(z, z) = 0 for some z ∈ Z. Then the positivity of the Gram matrix (4.11)
for n = 2 implies that K(z, z) = K(z, z) = 0 for all z ∈ Z, and the indecomposability
assumed at the beginning of (ii) implies that Z = {z} and K is identically zero. Thus, F
takes only infinite values and is, therefore, conditionally positive.

Case 3: K(z, z) ̸= 0 for all z ∈ Z, but K(x, y) = 0 for some x, y ∈ Z. By Proposi-
tion 4.5.2(iv), we may normalize K such that K(z, z) = 1 for all z ∈ Z. The Gram matrix

G =(
K(x, x) K(x, y) K(x, z)
K(y, x) K(y, y) K(y, z)
K(z, x) K(z, y) K(z, z)

) =(
1 K(x, y) K(x, z)

K(y, x) 1 K(y, z)
K(z, x) K(z, y) 1

)

of x, y, z ∈ Z is Hermitian and positive semidefinite. Hence, its determinant is nonneg-
ative:

0 ≤ 1 − Kk(x, z)

2
− Kk(y, z)


2
= 1 − K(x, z)


2βk − K(y, z)


2βk .

Unless at least one ofK(x, z) orK(y, z) vanishes, the twonegative terms tend for k →∞
both to 1. Hence, the right hand side converges to −1. This holds for any z, whence Z
can be split into two subsets X and Y such that K(x, z) = 0 for z ∈ Y , and K(y, z) = 0
for z ∈ X. By Hermiticity, K(z, x) = 0 for z ∈ Y , and K(z, y) = 0 for z ∈ X. Repeat-
ing the argument for all zeros constructible this way shows that Z decomposes as in
Proposition 4.5.2(iii), a contradiction.
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68 | 4 Euclidean spaces

If we want to discuss a possible generalization of Theorem 4.5.4 to other expo-
nents, we need to assume that the power exists, which suggests to assume for K(z, z)
an exponential form.

The Berezin–Wallach set of a mapping F : Z × Z → ℂ ∪ {−∞} is the setW(F) of
nonnegative real numbers β for which

K(z, z) := eβF(z,z
) (4.33)

is of positive type. TheBerezin–Wallach set of a coherent space is the setW(F)where

F(z, z) := logK(z, z),

using theprincipal valueof the logarithmand log 0 = −∞. (Thus, theBerezin–Wallach
set of a coherent space always contains 1.)

This set was introduced byWallach [293] in the context of representations of Lie
groups. But already earlier, Berezin [33] computed the Berezin–Wallach set for the
case when F is the Kähler potential of a Siegel domain. Indeed, in many cases of in-
terest, Z is a so-called Kähler manifold, and F the associated Kähler potential; see,
for example, Zhang et al. [316, Section VI]. For the Berezin–Wallach sets correspond-
ing to Hermitian symmetric spaces see, for example, Faraut & Korányi [85, Section
XIII.2].

Theorem 4.10.2.
(i) The Berezin–Wallach set W(F) is a closed set containing 0.
(ii) W(F) contains with β and β their sum, and hence all linear combinations with non-

negative integral coefficients.
(iii) If W(F) contains an open set it contains all sufficiently large positive real numbers.
(iv) If F is conditionally positive, then W(F) contains all nonnegative real numbers.
(v) If 0 is a limit point of W(F), then F is conditionally positive.

Proof. (i)–(iv) follow easily from Proposition 4.5.3(ii). (v) follows from Theorem 4.10.1.

In the most interesting cases, the Berezin–Wallach set is of the form α𝕄0 ∪ [β,∞]
or α𝕄0, where α, β > 0 and𝕄0 denotes the set of nonnegative integers. In general, the
Berezin–Wallach set may have a very complicated structure, already for Z with three
elements only. FitzGerald & Horn [88] show that the Berezin–Wallach set of every
finite coherent space Z with real, nonnegative coherent product contains the interval
[|Z| − 2,∞[.
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5 Coherent spaces

The notion of a coherent space is a nonlinear version of the notion of a complex
Euclidean space: The vector space axioms are dropped while the notion of inner
product—now called a coherent product—is kept. Thus, length and angular proper-
ties of vectors in a Euclidean space (embodied in the inner product) are generalized in
a similar way as, in the past, metric properties of Euclidean spaces were generalized
to metric spaces, differential properties of Euclidean spaces were generalized to man-
ifolds, and topological properties of Euclidean spaces were generalized to topological
spaces.

This chapter defines concepts and basic theorems about coherent spaces.We treat
the most basic aspects of coherent spaces, associated vector spaces, and their topol-
ogy, starting from first principles. All proofs are carried out in detail.

To illustrate some of the connections to physics and complex analysis, we give
a long but still very incomplete list of examples of coherent spaces. Some of these
examples are very elementary and can be understood informally before reading the
systematic exposition of the theory. Many more coherent spaces can be constructed
by modifying given ones using the recipes from Section 4.5.

5.1 Motivation for coherent spaces
The scalar product may, in fact, be calculated more simply than by using wave functions.

Roy Glauber, 1963 [98, p. 2771]

In informal, traditional terms, a coherent space is roughly a set Z, whose elements
label certain vectors, called coherent states of a Hilbert space. Its quantum space of
Z is the subspace formed by the linear combinations of coherent states. However, one
can characterize this situation independent of aHilbert space setting.Many Euclidean
spaces are described most simply and naturally in terms of a nice, small subset of
coherent states, and all their properties can be investigated in terms of the associated
coherent space. Thus, coherent spaces may also be viewed as a new, geometric way of
working with concrete Hilbert spaces in which they are embeddable. In this context,
coherent spaces give a natural geometric setting to the concept of coherent states.

In particular, while the study of most problems in traditional function spaces for
applications rely heavily on measures and integration, the quantum spaces of coher-
ent spaces—with an easily computable coherent product—can be studied efficiently
without measures or integrations, in terms of the explicit coherent product and dif-
ferentiation only; see Section 5.5 (below). This property, already noticed by Glauber
[98], who coined the notion of a coherent state, makes many calculations easy that
are difficult in Hilbert spaces, whose inner product is defined through a measure. As
a consequence, coherent spaces combine the rich, often highly characteristic variety

https://doi.org/10.1515/9783110667387-005
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70 | 5 Coherent spaces

of symmetries of traditional geometric structures with the computational tractability
of traditional tools from numerical analysis and statistics.

A strength of the coherent space approach is that it makes many different things
look alike, and stays close to actual computations. There are so many applications in
physics and elsewhere, that pointing them all out in detail would require writing a
whole book.

Coherent states and squeezed states in quantum optics, mean field calculations
in statistical mechanics, Hartree–Fock calculations for the electronic states of atoms,
semiclassical limits, integrable systems all belong here. Many computational tech-
niques in quantum physics can be profitably phrased in terms of coherent spaces; see
Section 6.8 (below).

As we shall see, coherent spaces abstract the essential geometric properties
needed to define a reproducing kernel Hilbert space. Examples of reproducing kernels
(that is, what in the present context are coherent products) were first discussed by
Zaremba [312] in the context of boundary value problems and by Mercer [185] in the
context of integral equations. The theorywas systematically developed by Aronszajn
[15, 16], Krein [167, 168], and others. For a history see Berg et al. [34] and Stewart
[277].

Coherent spaces and reproducing kernel Hilbert spaces are mathematically al-
most equivalent concepts, and there is a vast literature related to the latter. Most rele-
vant for the applications to quantum physics are the books by Perelomov [232], Neeb
[188], and Neretin [189]. However, the emphasis in these books is quite different from
the present exposition, as they are primarily interested in properties of the associated
function spaces and group representations, whereaswe are primarily interested in the
geometry and symmetry properties and in computational tractability.

Coherent spaces have also close relations to Fock spaces, unitary group represen-
tations, and to many other fields of mathematics, statistics, physics, and engineering;
see Section 5.10 (below).

5.2 Coherent spaces

Let Z be a nonempty set. A coherent product on Z is a function K : Z × Z → ℂ of
positive type.1 A coherent space2 is a nonempty set Z with a distinguished coherent

1 One obtains the more general concepts of semicoherent products and semicoherent spaces by
weakening the requirement of having positive type to the requirement that the supremum ns(Z) of the
number of negative eigenvalues of Grammatrices constructed fromK is finite. Much of the subsequent
theory remains valid, but the inner products need no longer be positive semidefinite and the quantum
spaces discussed below become Pontryagin spaces with ns(Z) negative squares; see Alpay et al. [9]. In
this book, this generalization is not considered further.
2 Note that some papers by Vourdas [290, 291] use the term “coherent space” for a different concept,
also related to coherent states. Completely unrelated is the notion of coherent spaces used in logic.

Brought to you by | Stockholm University Library
Authenticated

Download Date | 10/28/19 1:29 AM
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product K : Z × Z → ℂ. We regard the same set with different coherent products as
different coherent spaces.

Examples 5.2.1.
(i) Any subset Z of a Euclidean space is a coherent space with coherent product

K(z, z) := z∗z.
(ii) Any subset Z of a coherent space Z is again a coherent space, with the coherent

product inherited from Z by restriction.
(iii) For practical applications, it is often important that the coherent products are

given as explicit expressions K(z, z), with which one can work analytically, or
at least expressions, which can be efficiently approximated numerically. The eas-
iest way to construct such expressions is by using one of the many constructions
from Section 4.5.

In particular, coherent spaces generalize Euclidean spaces, and the coherent
product K(z, z) generalizes the Hermitian inner product z∗z, but in general no linear
structure is assumed on Z. This is similar to the way metric spaces generalize the
distance in Euclidean spaces without keeping their linear structure.

Many interesting examples exists; some of these are discussed in Neumaier &
Ghaani Farashahi [212]. We give one particularly important example.

Example 5.2.2. Let V be a Euclidean space. In a notation, where pairs are denoted by
square brackets, we write

z := [z0, z] ∈ ℂ × V

for the elements of Z = ℂ × V since

F(z, z) := z0 + z0 + z∗z (5.1)

is conditionally positive by Proposition 4.4.2. Theorem 4.10.1 implies that

K(z, z) := ez0+z0+z∗z (5.2)

is a coherent product,with respect towhichZ is a coherent space.We call this coherent
space theKlauder space over V and denote it by Kl[V]. (For V = ℂ, the associated co-
herent states, the nonzero multiples of those discovered by Schrödinger [269], were
first discussed in Klauder [157, p. 1062].)

Klauder spaces are discussed in more detail in Neumaier & Ghaani Farashahi
[212]. In particular, this paper derives a coherent construction of creation annihila-
tion operators together with their properties. As shown there, the quantum spaces of
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Klauder spaces are essentially the Fock spaces introduced by Fock [89] in the con-
text of quantum field theory. They were first presented by Segal [273] in a form
equivalent to the above. The quantum space of KL[ℂn] was systematically studied by
Bargmann [24]. These coherent spaces are closely related to quantum field theory
(Baez et al. [18], Glimm & Jaffe [99]) and the theory of Hida distributions in the white
noise calculus for classical stochastic processes (Hida & Si [128], Hida & Streit [129],
Obata [222]).

5.3 Quantum spaces

Let Z be a coherent space. A quantum space of Z is a Euclidean spaceℚ(Z) spanned
by (that is, consisting of all finite linear combinations of) a distinguished set of vectors
|z⟩ (z ∈ Z) satisfying

⟨z|z⟩ := ⟨z||z⟩ = K(z, z) for z, z ∈ Z,
with the linear functionals3

⟨z| := |z⟩∗
acting onℚ×(Z). Thus, there is a distinguished map from Z toℚ(Z)mapping z to the
vectors |z⟩ (z ∈ Z); these are called the coherent states of Z inℚ(Z). In this book, we
use this Dirac bra/ket notation only for coherent states and their adjoints.

We call the completionℚ(Z) := ℚ(Z) of a quantum space the corresponding com-
pleted quantum space of Z. The corresponding augmented quantum space is the
antidualℚ×(Z) := ℚ(Z)×. We have

ℚ(Z) ⊆ ℚ(Z) ⊆ ℚ×(Z).
If the quantum space is infinite-dimensional, thenℚ(Z) is usually a proper subspace
of the Hilbert space ℚ(Z). By definition of the weak-* topology of ℚ×(Z), ψℓ ∈ ℚ×(Z)
converges to ψ ∈ ℚ×(Z) iff ⟨z|ψℓ → ⟨z|ψ for all z ∈ Z.

Proposition 5.3.1.
(i) Letℍ be a Euclidean space. Then for any set Z and any mapping c : Z → ℍ,

K(z, z) := c(z)∗c(z) (5.3)

defines a coherent product on Z that turns Z into a coherent space, whose quan-
tum spaceℚ(Z) is the space consisting of the finite linear combinations of coherent
states |z⟩ := c(z). (ℚ(Z) is usually a proper subspace ofℍ.)

3 With this convention, ⟨z| is a linear functional mapping ψ ∈ ℚ×(Z) to ⟨z|ψ, whereas |z⟩ ∈ ℚ(Z) is
an antilinear functional mapping ψ ∈ ℚ×(Z) to ψ∗|z⟩.
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(ii) Conversely, every coherent product can be written in the form (5.3) such that the
coherent states are given as |z⟩ = c(z).

Proof. (i) follows by combining Example 5.2.1(i) with the definition of the quantum
space. To see (ii), takeℍ = ℚ(Z) and define c(z) := |z⟩.

Theorem 5.3.2. Every coherent space Z has a quantum space ℚ(Z). It is unique up to
an isomorphism that maps coherent states with the same label to each other.

Proof. By definition of a coherent space, the coherent product K is of positive type.
Hence, the Moore–Aronszejn theorem (Theorem 4.6.1) applies and provides a Hilbert
spaceℚ. If we define the coherent states |z⟩ := qz and their adjoints ⟨z| := q∗z , we find
from (4.15) below that

⟨z|z⟩ = ⟨qz , qz⟩ = K(z, z).
Thus, the space ℚ consisting of the finite linear combinations of coherent states is a
quantum space. If ℚ and ℚ are quantum spaces for Z with coherent states |z⟩ and
|z⟩, respectively, then

I(ϕ) :=∑ ak |zk⟩
 if ϕ =∑ ak |zk⟩

defines a map I : ℚ→ ℚ. Indeed, if ϕ = ∑ bk |zk⟩ is another representation of ϕ, then
∑ akK(z, zk) =∑ ak⟨z|zk⟩ = ⟨z|ϕ =∑ bk⟨z|zk⟩ =∑ bkK(z, zk).

Therefore, ϕ := ∑ bk |zk⟩ satisfies⟨z|ϕ =∑ bk
⟨z|zk⟩ =∑ bkK(z, zk)

=∑ akK(z, zk) =∑ ak
⟨z|zk⟩ = ⟨z|I(ϕ)

for all z ∈ Z, whence ϕ = I(ϕ). This map is easily seen to be an isomorphism.

Note that any linear map from a quantum space of a coherent space intoℂ is con-
tinuous, and any linear map from a quantum space of a coherent space into its antid-
ual is also continuous.

Let Z, Z be coherent spaces. Amorphism from Z to Z is a map ρ : Z → Z such
that

K(ρ(z), ρ(w)) = K(z,w) for z,w ∈ Z; (5.4)

if Z = Z, then ρ is called an endomorphism. Two coherent spaces Z and Z with
coherent products K and K, respectively, are called isomorphic if there is a bijective
morphism ρ : Z → Z. In this case, we write Z ≅ Z, and we call the map ρ : Z → Z
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74 | 5 Coherent spaces

an isomorphism of the coherent spaces. Clearly, ρ−1 : Z → Z is then also an isomor-
phism. If Z = Z and K = K, then we call ρ an automorphism of Z. Automorphisms
are closely related to the more general concept of coherent maps, introduced in Neu-
maier & Ghaani Farashahi [212].

Proposition 5.3.3. Let Z, Z be coherent spaces, and let ρ : Z → Z be an isomorphism.
Then
(i) K(ρ−1(z), ρ−1(w)) = K(z,w) for all z,w ∈ Z.
(ii) K(z, ρ(z)) = K(ρ−1(z), z) for all z ∈ Z and z ∈ Z.
Proof. (i) is straightforward.

(ii) Let z ∈ Z and z ∈ Z. Then
K(z, ρ(z)) = K(ρ(ρ−1(z)), ρ(z)) = K(ρ−1(z), z).

Proposition 5.3.4. Let Z be a coherent space with coherent product K, and let Z be an
arbitrary set. Then for any map ρ : Z → Z,

K(z, z) := K(ρz, ρz) for z, z ∈ Z
defines a coherent product on Z. This turns Z into a coherent space, with respect to
which ρ is a morphism.

Proposition 5.3.5. Let Z, Z be isomorphic coherent spaces. Then any two quantum
spacesℚ(Z) of Z andℚ(Z) of Z are isometric Euclidean spaces.
Proof. LetZ, Z be isomorphic coherent spaces. Letℚ(Z) andℚ(Z)bequantumspaces
of Z and Z, respectively. Let ρ : Z → Z be an isomorphism of coherent spaces. We
define the map Tρ : ℚ(Z)→ ℚ(Z) by

Tρ(∑
k
ck |zk⟩) :=∑

k
ck
ρ(zk)⟩

 for all ∑
k
ck |zk⟩ ∈ ℚ(Z).

Now


Tρ(∑

k
ck |zk⟩)


2

ℚ(Z) = ∑k ck
ρ(zk)⟩

2ℚ(Z)
=∑

k
∑
j
ckcjK
(ρ(zk), ρ(zj))

=∑
k
∑
j
ckcjK(zk , zj) =


∑
k
ck |zk⟩


2

ℚ(Z).
This implies that Tρ is a well-defined isometry. Since ρ is surjective, Tρ is surjective as
well. Thus, Tρ is an isomorphism.
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5.4 Length, angle, distance

The definition of a coherent space has a number of simple but useful general conse-
quences. The Hermiticity of the Gram matrix of z, z gives

K(z, z) = K(z, z). (5.5)

Since the diagonal elements of a Hermitian positive semidefinite matrix are real and
nonnegative:

K(z, z) ≥ 0 for all z ∈ Z. (5.6)

In particular, we may define the length of z ∈ Z to be

n(z) := √K(z, z) ≥ 0. (5.7)

Since every principal submatrix of a Hermitian positive semidefinite matrix has real
nonnegative determinants, the determinants of size 2 lead to

K(z, z
)2 ≤ K(z, z)K(z, z). (5.8)

Taking square roots gives the coherent Cauchy–Schwarz inequality

K(z, z
) ≤ n(z)n(z). (5.9)

This allows us to define the angle between two points z, z ∈ Z of positive length by

∠(z, z) := arccos |K(z, z)|
n(z)n(z) ∈ [0,π[. (5.10)

Theorem 5.3.2 implies that, in a sense, coherent spaces are just the subsets of Eu-
clidean spaces. However, separating the structure of a coherent space Z from the no-
tion of a Euclidean space allows many geometric features to be expressed in terms of
Z and the coherent product alone, without direct references to the quantum space.
The latter only serves as a convenient tool for proving assertions of interest. For exam-
ple, the study of symmetry in Neumaier & Ghaani Farashahi [212] benefits from this
separation. Another example is the distance function induced on Z by the Euclidean
distance, as in the proof of Proposition 5.4.1 (below).

Proposition 5.4.1 (Parthasarathy & Schmidt [228, Corollary 1.3/4]). The distance

d(z, z) := √K(z, z) + K(z, z) − 2 ReK(z, z) (5.11)

of two points z, z ∈ Z is nonnegative and satisfies the triangle inequality. With (5.7), we
have

n(z) − n(z
) ≤ d(z, z) ≤ n(z) + n(z), (5.12)

K(y, z) − K(y
, z) ≤ d(y, y)n(z) + n(y)d(z, z). (5.13)
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76 | 5 Coherent spaces

Proof. The expression under the square root of (5.11) is

⟨z|z⟩ + ⟨z|z⟩ − ⟨z|z⟩ − ⟨z|z⟩ = |z⟩ − |z⟩2, (5.14)

whence d(z, z) is the Euclidean distance between |z⟩ and |z⟩. This implies nonneg-
ativity and the triangle inequality. n(z) is the length of |z⟩, and (5.12) follows. The
Cauchy–Schwarz inequality gives

K(y, z) − K(y, z
) = ⟨y|(|z⟩ − |z⟩) ≤ n(y)d(z, z).

Hence,

K(y, z) − K(y
, z) = K(y, z) − K(y, z) + K(y, z) − K(y, z)
≤ K(y, z

) − K(y, z) + K(y, z) − K(y, z)
≤ d(y, y)n(z) + d(z, z)n(y).

This proves (5.13).

We call a coherent space nondegenerate if K(z, z) = K(z, z) for all z ∈ Z im-
plies z = z. Clearly, this is the case iff the mapping from Z to ℚ(Z) that maps each
z ∈ Z to the corresponding coherent state |z⟩ is injective.

Proposition 5.4.2. The distance map d is a metric on Z iff K is nondegenerate on Z.

Proof. (5.14) implies that d(z, z) = 0 iff |z⟩ = |z⟩. Hence, d is a metric on Z iff K is
nondegenerate on Z.

The distance map d is a quasimetric. Therefore, it induces in the standard way
a topology on Z called the metric topology, and denoted by τm. There is a second
topology on nondegenerate coherent spaces Z, the coherent topology denoted by τc,
defined by calling a net zℓ coherently convergent to z iff K(zℓ, z) → K(z, z) for all
z ∈ Z. It can be readily checked that the coherent topology τc is at least as fine as the
metric topology τm, because if zn → z in the metric topology, then also zn → z in the
coherent topology.

Theorem 5.4.3. In any coherent space, the metric topology is the weakest (coarsest)
topology in which K is continuous.

Proof. We equip Z ×Z with the product topology induced by themetric topology on Z.
Let (zn, zn) be a convergent sequence to (z, z) ∈ Z × Z. Then zn → z and zn → z in the
metric topology. Hence, the sequence of n(zn) is bounded. Thus,

K(zn, z

n) − K(z, z

) ≤ d(zn, z)n(z) + d(zn, z)n(zn),
which implies that limn K(zn, zn) = K(z, z).
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Now let τ be any topology on the coherent space Z such that K : Z × Z → ℂ is
continuous. To prove that τ is at least as fine as τm, we assume that wn → w in Z with
respect to τ. Since K is continuous with respect to τ, and K(w,w) = n(w)2, we find

lim
n
d(wn,w) = limn √K(wn,wn) + n(w)2 − 2 ReK(wn,w)

= √K(w,w) + n(w)2 − 2 ReK(w,w)

= √n(w)2 + n(w)2 − 2 Re n(w)2 = 0,

which implies that wn → w in Z with respect to the metric topology as well. Thus, τ
is at least as fine as τm. This implies that the metric topology is the weakest (coarsest)
topology, in which K is continuous.

A coherentmanifold is a smooth (= C∞) real manifold Z with a smooth coherent
product K : Z ×Z → ℂ, with which Z is a coherent space. In a nondegenerate coherent
manifold, the infinitesimal distance equips themanifoldwith a canonical Riemannian
metric. Coherent manifolds are studied in detail in Neumaier & Ghaani Farashahi
[213].

5.5 Vectors in the augmented quantum space

By definition, all vectors inℚ×(Z) can be constructed as weak-* limits of nets inℚ(Z),
and hence by the following construction:

Proposition 5.5.1. A net ψℓ in ℚ(Z) is weak-* convergent iff, for all z ∈ Z, the inner
product ⟨z|ψℓ converges. In this case, the limit ψ = limψℓ ∈ ℚ×(Z) is characterized by

ψ(|z⟩) := ⟨z|ψ = lim⟨z|ψℓ for z ∈ Z. (5.15)

Proof. By definition, weak-* convergence to ψ says that ψℓ(ϕ) → ψ(ϕ) for all ϕ ∈
ℚ(Z). In particular, ⟨z|ψℓ = ψℓ(|z⟩) converges to ψ(|z⟩), and (5.15) holds. Conversely,
suppose that the limit (5.15) exists for all z ∈ Z. Any ϕ ∈ ℚ(Z) can be written as a
finite linear combination ϕ = ∑k αk |zk⟩. Hence, ψℓ(ϕ) = ∑k αkψℓ(|zk⟩) = ∑k⟨zk |ψℓ
converges. Thus, the net ψℓ is weak-* convergent.

Let X be an open subset of a finite-dimensional complex vector space. We call a
map u : X → Z smooth if, for each z ∈ Z, K(z, u(x)) is C∞ as a function of x ∈ X,
and strongly smooth if, in addition, K(u(x), u(y)) is C∞ in (x, y) ∈ X × X. (With these
notions of smoothness, Z becomes in two ways a diffeological space; see Iglesias-
Zemmour [143].)

Theorem 5.5.2. Let u : X → Z be a smooth map, and let A be a linear differential oper-
ator on C∞(X). Then the following hold:

Brought to you by | Stockholm University Library
Authenticated

Download Date | 10/28/19 1:29 AM



78 | 5 Coherent spaces

(i) For any x ∈ X, there is a unique state ψu,A,x ∈ ℚ×(Z) such that
⟨z|ψu,A,x = A(x)K(z, u(x)). (5.16)

(ii) For fixed u, x, the map A→ ψu,A,x is linear.
(iii) If u is strongly smooth, then ψu,A,x ∈ ℚ(Z).
(iv) If u : X → Z and v : Y → Z are strongly smooth, if A,B are linear differential

operators on C∞(X) and C∞(Y), respectively, and x ∈ X, y ∈ Y, then
ψ∗u,A,xψv,B,y = A(x)B(y)K(u(x), u(y)).

Proof. (i) Every linear differential operator A on C∞(X) can be written as a limit of a
sequence of finite linear combinations of function values,

A(x)f (x) = limℓ→∞∑k αℓkf (x + hℓk),
obtainable by replacing eachderivative by a limit of differencequotients.Weapply this
to the function f ∈ C∞(X), defined by f (x) := K(z, u(x)), and find that the sequence of
vectors ψℓ := ∑k αℓk |u(x + hℓk)⟩ satisfies

limℓ ⟨z|ψℓ = limℓ ∑k αℓk⟨z|u(x + hℓk)⟩ = limℓ ∑k αℓkK(z, u(x + hℓk))
= limℓ A(x)K(z, u(x)).

Thus, ψ := limψℓ exists and satisfies (5.16).
(ii) is straightforward.
(iii) and (iv) are proved similarly.

The above expressions for inner products make many calculations easy that are
difficult in Hilbert spaces, whose inner product is defined through a measure. In par-
ticular, the quantum spaces of coherent spaces with an easily computable coherent
product can be studied efficiently without measures or integrations, in terms of the
explicit coherent product and differentiation only.

5.6 New states from old ones

From the set of coherent states, it is possible to create a large number of other states,
whose inner product is computable by a closed formula. This is important for numer-
ical applications, since one can pick from the new states created in this fashion a suit-
able subset, and declare the states belonging to this subset to be the coherent states
of a new, derived coherent space. This way of constructing new coherent spaces from
old ones allows one to apply the general body of techniques for the analysis of coher-
ent spaces and their quantum properties to the new coherent space. In this way, many
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known numerical techniques for quantum physics problems become organized in the
same setting.

The first, often useful construction takes a path u(t) in Z and creates new states

[Rtu(t)] := limh↓0 h−1(u(t + h)⟩ − u(t)⟩).
Wewrite = 𝜕jK for the partial derivative with respect to the jth argument of K and find
the inner products

⟨z|[Rtu(t)] = limh↓0 h−1(K(z, u(t + h)) − K(z, u(t))) = 𝜕2K(z, u(t))u̇(t),
[Rtu(t)]

∗
[Rsv(s)] = limh↓0 h−1(⟨u(t + h)[Rsv(s)] − ⟨u(t)[Rsv(s)])

= lim
h↓0 h−1(𝜕2K(u(t + h), v(s))v̇(t) − 𝜕2K(u(t), v(s))v̇(t))
= u̇(t)𝜕1𝜕2K(u(t), v(s))v̇(s).

Similar expressions can be found by taking other smooth parameterizations of sub-
manifolds of Z and taking the limits corresponding to first-order or higher-order par-
tial derivatives.

A trivial construction is to take linear combinations

[α, y] :=∑
k
αk |yk⟩,

where α is a finite sequence of complex numbers αk, and y is a finite sequence of points
yk ∈ Z. The inner products are given by

⟨z|[α, y] =∑
k
αkK(z, yk),

[α, y]∗[α, y] =∑
j,k αjαkK(yj, yk).

This also works for infinite sequences, provided the right-hand sides are always
absolutely convergent, and with sums replaced by integrals for weighted integrals
∫ α(x)|y(x)⟩ dμ(x), provided the corresponding integrals on the right-hand sides are
always absolutely convergent. Of course, all these recipes can also be combined.

We see that, unlike in traditional Hilbert spaces, where the calculation of inner
products always requires to evaluate often high-dimensional integrals, here the cal-
culation of inner products is much simpler, often only taking sums and derivatives.

5.7 Some examples

We now give a long list of basic examples of coherent spaces exhibiting the flavor of
the relations to other fields of mathematics and science. As indicated in the introduc-
tion, this is just the tip of an iceberg; many other coherent spaces will be discussed
elsewhere.

Brought to you by | Stockholm University Library
Authenticated

Download Date | 10/28/19 1:29 AM



80 | 5 Coherent spaces

The first group of examples arises in applications to quantummechanics. For the
physical background see, for example, Neumaier &Westra [214].

Examples 5.7.1. The simplest instances of coherent spaces are the spaces formed by
the subsets Z of ℂn, which are closed under conjugation and scalar multiplication,
with one of the coherent products:

K(z, z) := {1 if z = z,
0 otherwise,

(5.17)

K(z, z) := z∗z, (5.18)

K(z, z) := (z∗z)2j (j = 0, 1
2
, 1, 3

2
, . . .), (5.19)

K(z, z) := e(z∗z− 12 ‖z‖2− 12 ‖z‖2)/ℏ, (5.20)

where ℏ is a positive real number. In the applications to quantum mechanics, ℏ is the
Planck constant. The axioms are easily verified using the constructions of Proposi-
tion 4.5.2 and Theorem 4.5.4.
(i) Z = ℂn with the coherent product (5.17) corresponds to the phase space of a classi-

cal system of n oscillators, with n position and nmomentum degrees of freedom,
via the identification

z = q + ip, q = Re z, p = Im z.

In the corresponding quantum space, the associated coherent states are orthonor-
mal basis vectors, indexed by the phase space points.

(ii) The unit sphere Z inℂ2 with the coherent product (5.17) corresponds to the phase
space of a classical spin, such as a polarized light beam or a spinning top fixed
at its point.

(iii) The unit ball Z inℂ2 with the coherent product (5.17) corresponds to the classical
phase space of (monochromatic) partially polarized light.

(iv) Z = ℂnwith the coherent product (5.18) has as quantumspace theHilbert spaceℂn

of an n-level quantum system. The associated coherent states are all state vectors.
(v) The unit sphere

Z = {z ∈ ℂ2 | z∗z = 1}
inℂ2 with the coherent product (5.19) corresponds to theBloch sphere represent-
ing a single quantummode of an atomwith angular momentum (spin) j. The cor-
responding quantum space has dimension 2j + 1. For j = 1/2, it also represents an
arbitrary 2-level system, a so-called qubit; the prime example is the polarization
of a single photon mode (then Z is called the Poincaré sphere). The associated
coherent states are the so-called spin coherent states. This example shows that
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a given set Z may carry more than one interesting coherent product, resulting in
different coherent spaces with nonisomorphic quantum spaces. For j →∞, these
spaces degenerate into the coherent space of a classical spin.

(vi) Z = ℂn with the coherent product (5.20) has as quantum space, the bosonic Fock
space,withndegrees of freedom, corresponding ton independent harmonic oscil-
lators. The associated coherent states are the so-calledGlauber coherent states.
In the so-called classical limit ℏ→ 0 (which can be takenmathematically, though
not in reality), the space degenerates into the coherent space of a classical system
with n spatial degrees of freedom.

We note that for (5.20), the power construction from Theorem 4.5.4(i) amounts to
a replacement of ℏ by ℏ/n. Therefore, the classical limit amounts here to applying the
power construction for arbitrary n and considering the limit n→∞. Generalizing this
to arbitrary coherent spaces provides a general definition of the classical limit, even
when ℏ does not appear in the coherent product. For example, the power construction
applied to (5.18) produces (5.19) with 2j = n. Thus, the classical limit amounts here to
the limit of infinite angularmomentum. The classical limit and a related semiclassical
analysis of coherent quantum physics is investigated in general in Neumaier [209].

It is interesting to note that in order that a coherent product results, ℏ can take in
(5.20) any positive value, whereas in (5.19), 2jmust be a nonnegative integer. The latter
is already needed in order that the power is unambiguously defined.

More generally, any coherent space Z gives rise to an infinite family of coherent
spaces Zn on the same set Z, but with modified coherent product Kn(z, z) := K(z, z)n
with a nonnegative integer n. The quantum spaceℚ(Zn) is the symmetric tensor prod-
uct of n copies of the quantum spaceℚ(Z).

In general, the need for a nonnegative integer in the exponent is related to Bohr–
Sommerfeld quantization of compact phase spaces. The conditions that must be
imposed on the exponent in general are captured through the concept of a Berezin–
Wallach set in Section 4.10.

Example 5.7.2. The set Z = ℝ+ of positive real numbers is a real coherent space with
trivial conjugation for any of the coherent products:

K(z, z) = min(z, z),
K(z, z) = (z + z)−1.

(i) In the first case, a completed quantum space is L2(ℝ+) with coherent states
kz(z
) = {1 if z ≤ z,

0 otherwise.

(ii) In the second case, a completed quantum space is L2(ℝ+) with coherent states
kz(z
) = e−zz
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since

⟨kz , kz⟩ =
∞
∫
0+ dykz(y)kz (y) =

∞
∫
0

dye−zye−zy = ∞∫
0

dye−(z+z)y = 1
z + z .

The following spaces are important not only in complex analysis, but are also rele-
vant in quantumphysics, for the analysis of quantummechanical scattering problems
(de Branges & Rovnyak [51, Theorem 4]). Example 5.7.3(ii) (below) is relevant in sig-
nal processing.

For a function f : Z ⊂ ℂ→ ℂ, we define its conjugate f : Z → ℂ by

f (z) := f (z). (5.21)

Examples 5.7.3.
(i) A de Branges function is an entire analytic function E : ℂ→ ℂ satisfying

E(z)
 <
E(z)
 if Im z > 0. (5.22)

With the coherent product

K(z, z) := {{
{

E(z)E(z) − E(z)E(z) if z = z,
E(z)E(z)−E(z)E(z)

2i(z−z) otherwise,

Z = ℂ is a coherent space. A corresponding quantum space is the subspace of
L2(ℝ), spanned by the coherent states qz, denoted byℋ(E), and defined by

qz(t) =
K(z, t)
E(t)
:= lim

ε↓0 K(z, t + iε)
E(t + iε)

for t ∈ ℝ.

(The denominator on the right is nonzero by (5.22). The limit exists and is con-
tinuous as a function of t since at an n-fold zero t of E, the function K(z, ⋅) has t
as a zero of multiplicity at least r.) Indeed, the formula q∗z qz = K(z, z) follows by
evaluating the integral expression for q∗z qz using the residue theorem. For details
see de Branges [50, Theorem 19, p. 50], where the quantum space is more fully
characterized.

(ii) Z = ℂ is a coherent space with the coherent product

K(z, z) := sinc(z − z), sinc(z) := {
1 if z = 0,
sin(z)/z otherwise.

This is the special case E(z) = e−iz of (i).
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(iii) A Schur function (Schur [272]) is an analytic function s from the open unit disk
B(0; 1) in ℂ into its closure. With the coherent product

K(z, z) := 1 − s(z)s(z)
1 − zz ,

Z := B(0; 1) is a coherent space. Note that the inverse is defined since |zz| < 1.
Coherence follows from results by de Branges & Rovnyak [52]. The correspond-
ing quantum spaces are the sub-Hardy spaces discussed by Sarason [260], also
called de Branges–Rovnyak spaces; see the recent survey by Ball & Bolot-
nikov [21].

(iv) The Szegö space is the coherent space defined on the open unit disk in ℂ,

D(0, 1) := {z ∈ ℂ | |z| < 1},

by the coherent product

K(z, z) := (1 − zz)−1,
see Szegö [282]. This example from 1911 is probably the earliest nontrivial explicit,
coherent product in the literature. It is the special case s = 0 of (iii); its quantum
space is the Hardy space on the unit disk. Coherence also follows directly from
Theorem 4.5.4(iii).

In general, unlike in these (andother simple) examples, thereneednot be a simple
realization of a quantum space in terms of an L2 space with respect to a suitable mea-
sure. Fortunately, such a description is usually not needed in applications to physics
since one can work comfortably in the quantum space using only its defining prop-
erties. This is one of the strengths of the concept of coherent spaces, as it allows one
to avoid the often cumbersome evaluation of integrals in the computation of inner
products.

5.8 Normal, projective, and nondegenerate coherent spaces

We call a coherent space normal if

{
K(z, z) = 1 if z = z,
|K(z, z)| < 1 otherwise.

In a normal coherent space, coherent states have norm 1. Hence, the distance simpli-
fies to

d(z, z) := c√1 − ReK(z, z), c = √2. (5.23)

This distancewas studied by Arcozzi et al. [14] with c = 1 rather than the above value.
(5.23) implies that a normal coherent space Z is nondegenerate.
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Proposition 5.8.1. Let Z be a coherent space with coherent product K. Then, for any
function γ : Z → ℂ, the set Z with scaled coherent product

Kγ(z, z
) := γ(z)K(z, z)γ(z)

is also a coherent space.

Proof. The Gram matrix G of the scaled coherent product has entries
Gjk := Kγ(zj, zk) = γ(zj)K(zj, zk)γ(zk)

and is clearly Hermitian. For any vector u, we define the vector v with components
vk := γ(zk)uk and find

u∗Gu =∑
j,k ujγ(zj)K(zj, zk)γ(zk)uk =∑j,k vjK(zj, zk)vk ≥ 0.

Thus, G is positive semidefinite.

Proposition 5.8.2. Let Z be a coherent space. If the coherent product is not identically
zero, then there is a normal, coherent space Z such that there is an isomorphism α :
ℚ(Z)→ ℚ(Z) with

{α|z⟩ | z ∈ Z} ⊆ {λ|z⟩ | λ ∈ ℂ, z ∈ Z}.
Therefore, any image of a coherent state of Z is a multiple of some coherent state of Z.
Proof. If K(z, z) = 0, then the coherent state |z⟩ vanishes by the Cauchy–Schwarz
inequality (4.4). Thus, we can delete such points from Z. By scaling using Proposi-
tion 5.8.1, we may assume that K(z, z) = 1 without changing the Hilbert space. Now
the proof of the Cauchy–Schwarz inequality (4.4) shows that if |K(z, z)| = 1, then the
coherent states |z⟩ and |z⟩ differ by a phase only; so we may delete one of them with-
out changing the Hilbert space. The new coherent space is normal.

We call a coherent space Z projective if there is a scalar multiplication that as-
signs to each λ ∈ ℂ×, and each z ∈ Z a point λz ∈ Z such that

K(z, λz) = λeK(z, z) for all z, z ∈ Z, (5.24)

for some e ∈ ℤ \ {0} called the degree. Note that a coherent space cannot be both
normal and projective. Example 5.7.1(v) is projective of degree e = 2j; Examples 5.7.2(i)
and (ii) are projective of degree 1 and −1, respectively.

There are important degenerate projective spaces, where the scalarmultiplication
is not associative, because it is not canonically defined. An example are the Klauder
spaces from Example 5.2.2, which are projective of degree 1 with the scalar multiplica-
tion

λ[z0, z] := [z0 + log λ, z],
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5.8 Normal, projective, and nondegenerate coherent spaces | 85

using an arbitrary but fixed branch of log. The need to restrict to a fixed branch causes
the associative law to be not valid universally. On the other hand, we have:

Proposition 5.8.3. Let Z be a nondegenerate and projective space. Then the scalarmul-
tiplication is associative:

λ(μz) = (λμ)z for λ, μ ∈ ℂ×, z ∈ Z. (5.25)

Proof. Let z ∈ Z and λ, μ ∈ ℂ×. For all z ∈ Z, we have
K(λ(μz), z) = λeK(μz, z) = λeμeK(z, z) = (λμ)eK(z, z) = K((λμ)z, z).

Now nondegeneracy of K implies (5.25).

Proposition 5.8.4. Let Z be a projective coherent space of degree e. Then

K(λz, z) = λeK(z, z) for all z, z ∈ Z, (5.26)
|λz⟩ = λe|z⟩ for λ ∈ ℂ×, z ∈ Z, (5.27)

K(z, λz) = K(λz, z) for λ ∈ ℂ×, z ∈ Z. (5.28)

Proof. (5.26) follows from the definition and (5.5). To prove (5.27), let z ∈ Z and λ ∈ ℂ.
Then, for all z ∈ Z,

⟨z|λz⟩ = K(z, λz) = λeK(z, z) = λe⟨z|z⟩.
Finally, using (5.24) and (5.26), we get

K(z, λz) = λeK(z, z) = K(λz, z).
Formula (5.28) implies that the scalar multiplication maps are coherent maps in

the sense introduced in Section 5.9 below.
Any coherent space can be extended to a projective coherent spacewithout chang-

ing the quantum space. The idea of a projective extension can be traced back to
Klauder [158].

Proposition 5.8.5. Let Z be a coherent space and e be a nonzero integer. Then the pro-
jective extension PZ := ℂ× × Z of degree e is a projective coherent space with coherent
product

Kpe((λ, z), (λ
, z)) := λeK(z, z)λ e (5.29)

and scalar multiplication λ(λ, z) := (λλ, z). The corresponding quantum spaces ℚ(Z)
andℚ(PZ) are canonically isomorphic.

Proof. It is straightforward to check that PZ, with respect to the projective extension
kernel Kpe, is a projective coherent space of degree e. The map T : ℚ(PZ) → ℚ(Z)
given by
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86 | 5 Coherent spaces

T∑ℓ cℓ(λℓ, zℓ)⟩ :=∑ℓ cℓλeℓ |zℓ⟩ for all ∑ℓ cℓ(λℓ, zℓ)⟩ ∈ ℚ(PZ)
is well-defined and linear. Also, we have


T∑ℓ cℓ(λℓ, zℓ)⟩

2

ℚ(Z) = ∑ℓ cℓλeℓ |zℓ⟩
2

ℚ(Z)
=∑

j
∑
k
cjλej ckλ

e
kK(zj, zk)

=∑
j
∑
k
cjckKpe((λj, zj), (λk , zk))

=

∑ℓ cℓ(λℓ, zℓ)⟩

2

ℚ(PZ),
which implies that T is an isometric linear operator. Thus, T is injective as well. Let
ψ = ∑ℓ cℓ|zℓ⟩ ∈ ℚ(Z)with cℓ ̸= 0 for all ℓ. Thenϕ := ∑ℓ |(c−eℓ , zℓ)⟩ ∈ ℚ(PZ)with Tϕ = ψ.
Thus, T is an isomorphism.

Corollary 5.8.6. Let Z be a coherent space, and let e be a nonzero integer. Then Z is
projective of degree e iff PeZ ≅ Z.

Proof. Let Z be a projective space of degree e ∈ ℤ. We then define ρ : PeZ → Z by
ρ(λ, z) := λz for all (λ, z) ∈ PeZ. It is easy to check that ρ : PeZ → Z is an isomorphism.
Hence, PeZ ≅ Z. Conversely, suppose that PeZ ≅ Z, and let ρ : PeZ → Z be an iso-
morphism of coherent spaces. Then, with multiplication defined by λz := ρλρ−1z, Z is
projective of degree e. Indeed, using Proposition 5.3.3(ii) for z, z ∈ Z, we have

K(z, λz) = K(z, ρλρ−1z) = Ke(ρ−1z, λρ−1z) = λeKe(ρ−1z, ρ−1z) = λeK(z, z).
Proposition 5.8.7. Let Z be a coherent space. Define on Z an equivalence relation ≡ by

z ≡ z ⇔ K(z, z) = K(z, z) for all z ∈ Z.
Then the set [Z] of equivalence classes

[z] := {z ∈ Z|z ≡ z} (z ∈ Z)
is a nondegenerate coherent space with the coherent product

K([z], [z]) := K(z, z) for all z, z ∈ Z. (5.30)

The corresponding quantum spacesℚ(Z)andℚ([Z])are canonically isomorphic. In par-
ticular, if Z is projective, then [Z] is projective, with scalar multiplication λ[z] := [λz].

Proof. Let Z be a coherent space and z, z,w,w ∈ Z with [z] = [w] and [z] = [w].
Then
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5.8 Normal, projective, and nondegenerate coherent spaces | 87

K([z], [z]) = K(z, z) = K(w, z) = K(w,w) = K([w], [w]).
Thus, K : [Z] × [Z] → ℂ is well-defined. It is straightforward to check that ([Z],K) is a
coherent space. Now let z,w ∈ Z with K([z], [z]) = K([w], [z]) for all z ∈ Z. Hence,

K(z, z) = K([z], [z]) = K([w], [z]) = K(w, z)
for all z ∈ Z, giving [z] = [w]. Thus, [Z] is nondegenerate. Let T : ℚ(Z) → ℚ([Z]) be
given by ψ → Tψ, where Tψ := ∑ cℓ|[zℓ]⟩ for ψ = ∑ cℓ|zℓ⟩ ∈ ℚ(Z). If ψ = ∑ cℓ|zℓ⟩ = 0,
then (for all w ∈ Z)

⟨[w]|Tψ =∑ cℓ⟨[w]|[zℓ]⟩ =∑ cℓK([w], [zℓ]) =∑ cℓK(w, zℓ) = 0.
Thus, Tψ = 0. Hence, T : ℚ(Z) → ℚ([Z]) is a well-defined linear operator. Also,

for ψ ∈ ℚ(Z), we have

‖Tψ‖2 =∑
j
∑
k
cjckK([zj], [zk]) =∑

j
∑
k
cjckK(zj, zk) = ‖ψ‖

2,

which implies that T is an isometry, hence injective. It is straightforward to see that T
is surjective as well. Hence, T is an isomorphism.

If Z is projective, then [Z] is projective with the same degree, with scalar multipli-
cation λ[z] := [λz]. Indeed, if Z is projective of degree e, we have

K([z], λ[z]) = K([z], [λz]) = K(z, λz) = λeK(z, z) = λeK([z], [z])
for all z, z ∈ Z and λ ∈ ℂ×.
Corollary 5.8.8. Let Z be a projective coherent space. The canonical scalar multiplica-
tion on the nondegeneration space [Z] is associative.

Theorem 5.8.9. Let Z be a coherent space, and let A : Z → Z be a coherent map with
adjoint A∗. Then the class map [A] : [Z]→ [Z], defined by

[A][z] := [Az] for all z ∈ Z,

is a well-defined and coherent map with the unique adjoint [A]∗ = [A∗].
Proof. Let z, z ∈ Z with [z] = [z]. Using coherence of A, we have

K(Az, z) = K(z,A∗z) = K(z,A∗z) = K(Az, z)
for all z ∈ Z. Thus, [Az] = [Az], and hence [A] : [Z] → [Z] is well-defined. Then,
using coherence of A and applying the definition of the class map for the coherent
maps A and A∗, we get

K([A][z], [z]) = K([Az], [z]) = K(Az, z) = K(z,A∗z)
= K([z], [A∗z]) = K([z], [A∗][z])

for all z, z ∈ Z. This guarantees that the class map [A] is a coherent map with the
unique adjoint [A]∗ = [A∗].
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88 | 5 Coherent spaces

Theorem 5.8.10. Let Z be a coherent space. Then [PZ] ≅ P[Z], using a canonical iden-
tification. In particular,
(i) if Z is projective, then we have [PZ] ≅ [Z].
(ii) if Z is nondegenerate, then PZ is nondegenerate.

Proof. The canonical map ρ : [PZ]→ P[Z], given by [(λ, z)]→ (λ, [z]), is well-defined.
It is also straightforward to check that ρ is a bijection. Let [(λ, z)], [(λ, z)] ∈ [PZ]. Then,
we have

Kpe(ρ[(λ, z)], ρ[(λ
, z)]) = Kpe((λ, [z]), (λ, [z]))
= λK([z], [z])λ
= λK(z, z)λ = Kpe((λ, z), (λ, z))
= Kpe([(λ, z)], [(λ

, z)]),
implying that ρ : [PZ]→ P[Z] is an isomorphism of coherent spaces. If Z is projective,
then PZ ≅ Z. Thus, we get [PZ] ≅ [Z]. If Z is nondegenerate, then [Z] ≅ Z. Hence, we
have [PZ] ≅ P[Z] ≅ PZ, which implies that PZ is nondegenerate as well.

5.9 Symmetries

This section introduces the concept of symmetries of coherent spaces, transformations
of the space that preserve the coherent structure. More specifically, a symmetry of a
coherent space Z is a bijection A of Z with the property that K(z,Az) = K(ATz, z) for
another bijection AT . More generally, a map A : Z → Z is called coherent if there is
an adjoint map A∗ : Z → Z such that

K(z,Az) = K(A∗z, z) for z, z ∈ Z. (5.31)

If Z is nondegenerate, then the adjoint is unique, but not in general. A symmetry of
Z is an invertible coherent map on Z with an invertible adjoint. Coherent maps form
a semigroup Coh Z with identity; the symmetries form a subgroup. An isometry is a
coherentmapA that has an adjoint satisfyingA∗A = 1. An invertible isometry is called
unitary.

In the case of the trivial coherent product K(z, z) := z∗z, equation (5.31) holds
for every n × n matrix with conjugate transposition as the matrix adjoint. This mo-
tivates the general case, and shows in particular that the trivial coherent space has
the general linear group GL(n,ℂ) of invertible complex n × nmatrices as its group of
symmetries. More generally, all invertible transformations of a Euclidean spaceℍ are
symmetries of Z = ℍ, considered as a coherent space.

Example 5.9.1 (Distance regular graphs). The orbits of groups of linear self-mappings
of a Euclidean space define coherent spaces with predefined transitive symmetry
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5.9 Symmetries | 89

groups. For example, the symmetric group Sym(5) acts as a group of Euclidean isome-
tries on the 12 points of the icosahedron in ℝ3. The coherent space, consisting of
these 12 points with the induced coherent product, therefore has Sym(5) as a group
of unitary symmetries. The quantum space is ℂ3. The skeleton of the icosahedron is
a distance-regular graph, here a double cover of the complete graph on six vertices.
Many more interesting examples of finite coherent spaces are related to Euclidean
representations of distance regular graphs and other highly symmetric combinatorial
objects. See, for example, Brouwer et al. [55].

Example 5.9.2. The Möbius space Z = {z ∈ ℂ2 | |z1| > |z2|} is a coherent manifold
with coherent productK(z, z) := (z1z1−z2z2)−1. A quantum space is the Hardy space of
analytic functions on the complex upper half-plane with Lebesgue-integrable limit on
the real line. The Möbius space has a large semigroup of coherent maps (a semigroup
of compressions, Olshanski [225]) consisting of the matrices A ∈ ℂ2×2 such that

α := |A11|
2 − |A21|

2, β := A11A12 − A21A22, γ := |A22|
2 − |A12|

2

satisfy the inequalities

α > 0, |β| ≤ α, γ ≤ α − 2|β|.

It contains as a group of symmetries the groupGU(1, 1) of matrices preserving the Her-
mitian form |z1|2 − |z2|2 up to a positive factor.

The compact symmetric spaces (andmany noncompact ones) appear naturally as
coherent spaces when equipped with a coherent product derived from the coherent
states on semisimple Lie groups (see Perelomov [232]). In these cases, the coherent
product is naturally related to thedifferential,metric, symplectic, andKähler structure
of the associated symmetric spaces (see Section 4.10 and Zhang et al. [316, Sections
IIIC1 and VI]).

Highest weight representations. The example of the Möbius space generalizes
to a large class of exactly solvable classical systems with finitely many degrees of free-
dom, corresponding to the coherent states from group representations discussed in
Zhang et al. [316] and Simon [274], which are close to being computable (though not
all needed details are in these papers). The constructions relate to central extensions
of all semisimpleLie groups andassociated symmetric spacesor symmetric cones
and their line bundles. These provide many interesting examples of coherent mani-
folds. This follows fromwork on coherent states constructed from highest weight rep-
resentations, discussed in monographs by Perelomov [232], by Faraut & Korányi
[85], by Neeb [188].

Coherent states from highest weight representations induce on the corresponding
coadjoint orbit a measure, a metric, a symplectic form, and an associated symplectic
Poisson bracket. (See the Zhang et al. [316] survey for details from a physical point of
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90 | 5 Coherent spaces

view.) The Poisson bracket defines a Lie algebra on phase space functions (C∞ func-
tions on the coadjoint orbit), hence an associated group of Hamiltonian diffeomor-
phisms, and the coherent state approach effectively quantizes this group. All this can
be reconstructed directly from the associated coherent spaces. In particular, the non-
classical states of light in quantumoptics called squeezed states are described by the
Klauder spaces of Example 5.2.2, coherent spaces corresponding to the metaplectic
group; see related work by Neretin [189].

5.10 Uses of coherent spaces

In this book, coherent spaces are used to define a coherent quantum physics. How-
ever, coherent spaces have many other uses. In general, they provide a setting for the
study of geometry in a different direction than traditional metric, topological, and dif-
ferential geometry. Just as it pays to study the properties of manifolds independently
of their embedding into a Euclidean space, so does it appear fruitful to study the prop-
erties of coherent spaces independent of their embedding into a Hilbert space.

Coherent states are most often discussed as being parameterized by points on a
connected manifold. But the concept of a coherent space also makes sense in a non-
trivial way for finite spaces. There are strong relations between finite coherent spaces,
finite metric spaces, graphs, and combinatorial designs. See Bekka & de la Harpe
[29], Brouwer et al. [55], Godsil [101], Neumaier [190, 191, 192, 193]. This shows that
the concept of coherent spaces provides a nontrivial extension of the theory of coher-
ent states, in this respect similar to that of themeasure-free coherent states ofHorzela
& Szafraniec [140].

Of particular importance is the use of reproducing kernels in complex analysis
(see, for example, Faraut & Korányi, [85], Upmeier [287], and de Branges [50]) and
group theory (see, for example, Neeb [188]), where they are the basis of many impor-
tant theorems.

Reproducing kernel Hilbert spaces and the associated coherent states also have
applications in many other fields of mathematics (see, for example, [2, 4, 5, 8, 9, 10,
34, 60, 161, 228, 232, 255, 256]), statistics and stochastic processes (see, for example,
[37, 128, 129, 222, 228, 244, 256]), physics (see [2, 9, 10, 60, 93, 144, 161, 232]), and
engineering (see [5, 93]).

In particular, there are relations to
(i) Christoffel–Darboux kernels for orthogonal polynomials;
(ii) Euclidean representations of finite geometries;
(iii) zonal spherical functions on symmetric spaces;
(iv) coherent states for Lie groups acting on homogeneous spaces;
(v) unitary representations of groups;
(vi) abstract harmonic analysis;
(vii) states of C∗-algebras in functional analysis;
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5.10 Uses of coherent spaces | 91

(viii) reproducing kernel Hilbert spaces in complex analysis;
(ix) Pick–Nevanlinna interpolation theory;
(x) transfer functions in control theory;
(xi) positive definite kernels for radial basis functions;
(xii) positive definite kernels in data mining;
(xiii) positive definite functions in probability theory;
(xvi) exponential families in probability theory and statistics;
(xv) the theory of randommatrices;
(xvi) Hida distributions for white noise analysis;
(xvii) Kähler manifolds and geometric quantization;
(xviii) coherent states in quantummechanics;
(xix) squeezed states in quantum optics;
(xx) inverse scattering in quantummechanics;
(xxi) Hartree–Fock equations in quantum chemistry;
(xxii) mean field calculations in statistical mechanics;
(xxiii) path integrals in quantummechanics;
(xxiv) functional integrals in quantum field theory;
(xxv) integrable quantum systems.

These relations will be established elsewhere. The web site [200] will display at any
time the most recent state of affairs.
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6 Coherent quantum physics
Coherent quantumphysics is quantumphysics in terms of a coherent space and an ap-
propriate coherent product. The kinematical structure and the meaning of the quan-
tities are given by the symmetries (invertible coherent maps) of the coherent space.

If Z is a coherent manifold, a canonical symplectic form is often canonically de-
termined by the coherent product through the coherent action principle discussed in
Section 6.1. In a quantummechanical context,Z is indeed a classical phase space or an
extended phase space—typically a symplectic manifold, a Poisson manifold, or a cir-
cle or line bundle over such a manifold that incorporates the classical action variable
(encoding the Berry phase under quantization). For example, the Aharonov–Bohm
effect [3] needs the bundle formulation. A coherent space and its quantum space pro-
vide a classical and a quantum view of the same physical system, discussed in Sec-
tion 6.2.

Section 6.3 shows that symmetries of coherent spaces can be quantized, that is,
promoted to linear operators on the quantum space. This leads to quantum dynam-
ics, which in special (completely integrable) situations can be solved in closed form
in terms of classical motions on the underlying coherent space, if the latter has a com-
patible manifold structure. Close relations to concepts from geometric quantization
and Kähler manifolds are pointed out in Section 6.4.

In order that the quantum space of a coherent space Z can describe physics, one
needs not only a distinguished class of coherent states but a more general concept of
state. In Sections 6.5–6.6,we give a general abstract setting for states in Lie∗-algebras,
emphasize the essential mathematical features and the close analogy between clas-
sical and quantum physics. We illustrate these generalities with a number of exam-
ples in Section 6.7. The coherent action principle is put to use in Section 6.8 for nu-
merical quantum physics and an application to quantum chaos. Spectral issues can,
in favorable cases, be handled in terms of dynamical Lie algebras, discussed in Sec-
tion 6.9.

6.1 The coherent action principle

Abasic approximationprinciple inquantumphysics is theDirac–Frenkel approach for
reducing a nonrelativistic quantum problem to an associated approximate classical
problem. In this approach, the variational principle for classical Lagrangian systems
is rewritten for the present situation and then called the Dirac–Frenkel variational
principle. It was first used by Dirac [69] and Frenkel [91], and found numerous ap-
plications; a geometric treatment is given in Kramer & Saraceno [166]. The action
takes the form

I(ψ) = ∫ dtψ∗(iℏ𝜕t − H)ψ = ∫ dt(iℏψ∗ψ̇ − ψ∗Hψ), (6.1)

https://doi.org/10.1515/9783110667387-006
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94 | 6 Coherent quantum physics

where the quantum Hamiltonian H ∈ Lin×ℍ is a self-adjoint operator. The coher-
ent 1-form θmay be interpreted as the Lagrangian 1-form corresponding to the Dirac–
Frenkel action. The Legendre transform of the Lagrangian

L(ψ) := iℏψ∗ψ̇ − ψ∗Hψ
is the corresponding classical Hamiltonian

⟨H⟩ = ψ∗Hψ.
The Dirac–Frenkel action is stationary iff ψ satisfies the Schrödinger equation

iℏψ̇ = Hψ.

If one has a coherent space Z andℍ = ℚ(Z), a quantum space of Z, one can restrict ψ
to coherent states, and we get the coherent action

I(z) = ∫ dt⟨z|(iℏ𝜕t − H)|z⟩

for the path z(t). This coherent action principle was first proposed by Klauder
[158]. The variational principle for the action I(z) defines an approximate classical
Lagrangian (and hence conservative) dynamics for the parameter vector z(t). This
coherent dynamics on Z is regarded as a semiclassical (or semiquantal) approx-
imation of the quantum dynamics. In two important cases, the norm of the state is
preserved by the coherent dynamics—Zmust either benormalized, that is,K(z, z) = 1
for all z ∈ Z, or projective (as defined in Section 6.4). The approximation turns out to
be exact when the Hamiltonian belongs to the infinitesimal Lie algebra of the symme-
try group of the coherent state. It is inexact but good if it is not too far from such an
element.

The classical problem created by the coherent action principle is again conser-
vative, based an a classical action, which may or may not be transformable into an
equivalent Hamiltonian problem. The latter depends on whether the Dirac–Frenkel
Lagrangian is regular or singular. Thus, it is important that one understands the struc-
ture of classical singular Lagrangian problems. The regular case is characterized by
the fact that the derivative of the Lagrangian 1-form, associated with the action, is
nondegenerate, and hence defines a symplectic structure on the coherent space. For
details, we refer to Kramer & Saraceno [166].

6.2 Systems with classical and quantum view

The symplectic structure on a coherent manifold, if present, provides a classical view
of the system. On the other hand, as discussed in Section 5.3, the Moore–Aronszajn
theorem implies that every coherent space Z has a quantum spaceℚ(Z), unique up to
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6.2 Systems with classical and quantum view | 95

isometry, spanned algebraically by a distinguished set of coherent states |z⟩ (z ∈ Z),
satisfying

⟨z|z⟩ = K(z, z) for z, z ∈ Z. (6.2)

The antidual ℚ×(Z) := ℚ(Z)× contains the Hilbert space completion ℚ(Z) of ℚ(Z).
In quantum mechanical applications, ℚ(Z) is the Hilbert space containing the pure
states, whereasℚ×(Z) also contains unnormalizable wave functions. This provides a
quantum view of the system.

Thus, coherent spaces allow both a classical and a quantum view of the same
system. The two views are closely related, as the phase space points z ∈ Z label the
family of coherent states |z⟩. Therefore, in some sense, the classical phase space and
the quantum Hilbert space coexist in the framework of coherent spaces. The classi-
cal phase space is a quotient space of Z under the equivalence relation that identifies
points, whose corresponding coherent states differ only by a scale factor. Thus, points
in the phase space are in 1-1 correspondence with equivalence classes of points of Z,
hence equivalence classes of labels of coherent states. The quantum space is the com-
pletion of the space spanned by all coherent states. It is a Hilbert space that can be
realized as a space of functions on Z; the coherent states |z⟩ are essentially the func-
tions that map z ∈ Z to the coherent product K(z, z).

The same abstract quantum system may allow different classical views. This is
accommodated by writing the same Hilbert space in different but isomorphic ways as
the quantum space of different coherent spaces.

The most conspicuous expression of this ambiguity is the particle-wave dual-
ity, a notion describing the seemingly paradoxical situation that the same quantum
system may be approximately interpreted either in terms of classical particles or in
terms of classical waves, though—depending on the circumstances—only one of the
approximate views may be accurate enough to be useful.

If we regard a coherent space Z as a classical phase space, as often adequate, the
functions

ψ̂(z) := ψ∗|z⟩, ψ ∈ ℚ(Z)

are those classical phase space functions that have an immediate quantummeaning.
Note that ℚ×(Z) consists of all complex-valued maps on Z that are continuous in the
natural weak topology induced by the coherent product.

Constructing Hilbert spaces from a coherent space and its coherent product is
much more flexible, and hence more powerful, than the standard approach of con-
structing Hilbert spaces from a function space and a measure on it. Virtually every
Hilbert space arising in quantum mechanical practice can be neatly constructed as
the quantum space of an appropriate coherent space; the examples in Section 5.7 give
initial evidence of this.

The Glauber coherent states from Example 5.7.1(vi) are a particular instantiation
of this concept. A more trivial case to keep in mind is to label all vectors in the finite-
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96 | 6 Coherent quantum physics

dimensional Hilbert space ℂn, so that Z = ℂn and ⟨z|z⟩ = K(z, z) with
K(z, z) := z∗z =∑

k
zkz

k . (6.3)

This extends to infinite dimensions (the usual case inmost of quantum physics) by re-
placing the sumby an appropriate integral, and shows that the traditionalway of look-
ing atHilbert spaces canbe fully accommodatedwith such a coherent space.However,
this choice is poor from the point of view of the classical-quantum correspondence.
As we shall see, there are far better choices, leading to a much increased flexibility
compared to the traditional approach of defining Hilbert spaces by giving the inner
product as a sum or integral. More importantly, as one works most of the time in Z
and very little explicitly in the quantum space, one can often use classical intuition in
quantum situations, and the economy of classical computations is often preserved.

Finite linear combinations of coherent states form a dense subspace ℚ(Z) of the
Hilbert space ℚ(Z). This implies that all quantum mechanical calculations, usually
done in an orthonormal basis, can also be done on the basis of coherent states, and
often far more efficiently. Most conceptual issues can be discussed in coherent terms,
too. This makes the closeness to a classical description very plain, and removes much
of the mystery of quantum physics.

The simplest classical systemshave a finite numberN of states, corresponding to a
phase space Z withN elements. Their dynamics is that of a hopping process, a contin-
uous time Markov chain determined by consistently specifying transition rates for
hopping from one state to another. More complex classical systems have phase spaces
Z that are finite-dimensional manifolds when there are only finitely many degrees of
freedom. In particular, this is the arena of classical mechanics of point particles,
where Z is a symplectic manifold, or—more generally—a Poisson manifold. The de-
terministic dynamics is defined on Z by Hamilton’s equations, equivalently on phase
space functions by means of the Poisson bracket. Finally, in classical field theory,
the phase space Z is an infinite-dimensional space of fields in 3-dimensional space,
the deterministic dynamics on Z is described by partial differential equations. Often
an equivalent dynamics on phase space functions (now functions on fields) is given
in terms of an appropriate Poisson structure on Z.

A 2-level quantum system also models a spinning electron in the ground state of
its center of mass frame. Here the appropriate classical phase space is not the coun-
terintuitive two state (up-down) model, which depends on a distinguished direction
and hence sacrifices the spherical symmetry of the electron, but a 2-sphere in ℝ3, the
phase space of a classical spinning top. To account for the nonintegral spin of the elec-
tron,we should, in fact, take as classical phase space a circle bundle over the 2-sphere,
given by the unit sphere in ℂ2. This is related to the so-called Hopf fibration, a non-
trivial topological object. The discussion of the Hopf fibration in terms of quaternions
can be interpreted in terms of Pauli matrices, giving the traditional approach to 2-level
systems. In terms of coherent states, all these technicalities are hidden—one has the
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6.3 Quantization and the dynamics of q-observables | 97

quantum space without having to bother about the latter. This economy of coherent
states becomes more pronounced in more complicated models, which is the most im-
portant reason why they are useful.

6.3 Quantization and the dynamics of q-observables

This section introduces quantization procedures associated with symmetries of a co-
herent space. They generalize canonical transformations of a symplectic manifold,
which is the special case of classical mechanics of point particles.

This leads to quantum dynamics, which in special (completely integrable) situ-
ations can be solved in closed form in terms of classical motions on the underlying
coherent space, if the latter has a compatible manifold structure.

The importance of symmetries and more general coherent maps stems from the
fact proved inNeumaier&Ghaani Farashahi [212] that there is a quantization opera-
tor Γ that associateswith every coherentmapA, a linear operator Γ(A) on the quantum
spaceℚ(Z).1

Theorem 6.3.1 (Quantization theorem). Let Z be a coherent space andℚ(Z) a quantum
space of Z. Then for any coherentmapAonZ, there is a unique linearmap Γ(A) : ℚ(Z)→
ℚ(Z) such that

Γ(A)|z⟩ = |Az⟩ for all z ∈ Z. (6.4)

We call Γ(A) the quantization of A, and Γ the quantization map. The quanti-
zation map furnishes a representation of the semigroup of coherent maps on Z (and
hence of the symmetry group) on the quantum space of Z. In particular, this gives a
unitary representation of the group of unitary coherent maps on Z.

The quantization operator is important as it reduces many computations with co-
herent operators in the quantum space of Z to computations in the coherent space Z
itself. By the quantization theorem, large semigroups of coherent maps produce large
semigroups of coherent operators, whichmaymake complex calculationsmuchmore
tractable. Coherent spaces with many coherent maps are often associated with sym-
metric spaces in the sense of differential geometry.

This essentiallymeans that symmetries are those invertible linear transformations
of the quantum space that map coherent states into coherent states, but is expressed
without reference to the quantum space. This has very important implications for
practical computations, reducing computations in the quantum space to simple com-
putations in the coherent space. In particular, this makes certain problems easily ex-
actly solvable that are in the traditional position ormomentum representations nearly

1 In the literature, when applied to the special case, whereℚ(Z) is a Fock space, Γ(A) is often called
the second quantization of A.
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98 | 6 Coherent quantum physics

intractable. For example, the calculation of q-expectations requires in the traditional
setting the evaluation of an integral over configuration space. In the case of field the-
ory, the configuration space is infinite-dimensional, and already a rigorous definition
of such integrals is very difficult. Moreover, finding closed formulas for integrals in
high or infinite dimensions is more an art than a science. In contrast, in the coherent
space approach, many q-expectations of interest can be obtained by differentiation,
which is a fully algorithmic process.

Symmetries of a coherent space often represent the dynamical symmetries (see,
for example, barut & Raczka [27]) of an associated exactly solvable classical system.
For example, ifZ is a line bundle over a symplectic phase space, the symmetrieswould
be all linear symplecticmaps and their central extensions. Usually, only some of these
preserve the Hamiltonian, and hence are symmetries of the system with this Hamilto-
nian.

For virtually all quantum systems of interest, there is a large classical dynamical
symmetry group, which describes the symmetries of the underlying coherent space.
Typically, this symmetry group is a (possibly infinite-dimensional) Lie group, much
larger than the symmetry group of the system itself—which is the subgroup commut-
ing with the Hamiltonian (in the nonrelativistic case) or preserving the action (in the
relativistic case).

We now assume that Z is a coherent manifold. This means that Z carries a
C∞-manifold structure with respect to which the coherent product is smooth (C∞).
The relevant observables of the classical system are the discrete symmetries and
the infinitesimal generators of the 1-parameter groups of symmetries that are smooth
on the coherent product. They are promoted to q-observables of the corresponding
quantum system through the quantizationmap. For a symmetry A, the corresponding
q-observable is Γ(A). For an infinitesimal symmetry X, that is, an element of the Lie
algebra of generators of 1-parameter groups of the symmetry group, the corresponding
quantum symmetry, acting on the quantum space of Z, is the q-observable given by
the strong limit

dΓ(X) := lim
s↓0 Γ(eisX) − 1

is
.

Note that

dΓ(X + Y) = dΓ(X) + dΓ(Y), edΓ(X) = Γ(eX).
The quantization theorem, Theorem 6.3.1, may be regarded as a generalized Noether
principle that automatically promotes all symmetries of Z to dynamical symmetries
of the corresponding quantum system.

Thus, a coherent space contains intrinsically all information needed to inter-
pret the quantum system, including that about which operators may be treated as
q-observables.
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The dynamics of a physical system is traditionally given by aHamiltonian, a sym-
metric and Hermitian expression H in the q-observables. If the coherent space is in
fact a coherent manifold, the classical dynamics determined by the Hamiltonian
is given by a Poisson bracket canonically associated with the coherent space through
variation of the coherent action discussed in Section 6.1. To get a Poisson bracket, in
the case where the Lagrangian 2-form is degenerate, requires special measures; see
Section 18.1 in the book by Neumaier & Westra [214]. Classical mechanics on Pois-
son manifolds, the most general setting for Hamiltonian dynamics in closed classical
systems, is discussed in detail in Marsden & Ratiu [181]. Less general is classical me-
chanics on symplectic manifolds, and even more restricted is classical mechanics on
cotangent bundles. The latter includes classical mechanics on the phase space ℝ6N

for systems of N particles in Cartesian coordinates.
In a classical Hamiltonian system, the dynamics of a phase space function f

is given by ̇f = H ∠ f , where f ∠ g = {g, f } in terms of the Poisson bracket. For an
N-particle systemwith particle positions qj and particle momenta pj, specializing this
to f = qj and g = pj, gives the classical equations of motion. In a quantum system,
one has the same in the Heisenberg picture, and the resulting dynamics is equivalent
to the Schrödinger equation in the Schrödinger picture.

Exactly solvable systems. In the special case, where the classical Hamiltonian
is an infinitesimal symmetry of Z, and hence the quantum Hamiltonian has the form
Γ(H), the quantization lifts the classical phase-space trajectory to a quantum trajec-
tory. Thus, if the Lie algebra of q-observables contains the Hamiltonian (and in some
slightly more general situations), the quantum dynamics has the special feature that
coherence is dynamically preserved. In terms of the Hamiltonian, the dynamics for
pure quantum states ψ is traditionally given by the time-dependent Schrödinger
equation

iℏdψ
dt
= dΓ(H)ψ

for the corresponding quantum Hamiltonian dΓ(H). A dynamical symmetry pre-
served by H (in the classical case) or dΓ(H) (in the quantum case) is a true symmetry
of the corresponding classical or quantum system. The Fourier transform ψ̂(E) satis-
fies the time-independent Schrödinger equation

dΓ(H)ψ̂ = Eψ̂. (6.5)

The following result shows that the solution of Schrödinger equations with a suffi-
ciently nice Hamiltonian can be reduced to solving differential equations on Z.

Theorem 6.3.2. Let Z be a coherent space, and let 𝔾 be a Lie group of coherent maps
with associated Lie algebra 𝕃. Let H(t) ∈ 𝕃 be a Hamiltonian with possibly time-
dependent coefficients. Then the solution of the initial value problem

iℏ 𝜕
𝜕t
ψt = dΓ(H(t))ψt , ψ0 = |z0⟩ (6.6)
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100 | 6 Coherent quantum physics

with z0 ∈ Z has for all times t ≥ 0 the form of a coherent state, ψt = |z(t)⟩ with the
trajectory z(t) ∈ Z, defined by the initial value problem

iℏ ̇z(t) = H(t)z(t), z(0) = z0.

Thismeans that if a system is at some time in a coherent state, it will be at all times
in a coherent state.

This conservation of coherence has the consequence that the quantum system
is exactly solvable. This means that the complete solution of the dynamics of the
quantum system can be reduced to the solution of the corresponding classical system.
Effectively, the partial differential equations of quantum mechanics in the quantum
space are solved in terms of ordinary differential equations on theunderlying coherent
space. In many cases, this implies that the spectrum can be determined explicitly in
terms of the representation theory of the corresponding Lie algebras.

More generally (see, for example, Iachello [142]), we have an exactly solvable
system whenever the Hamiltonian H(t) is a linear combination of infinitesimal sym-
metries with coefficients given by Casimirs of the Lie algebra 𝕃 of infinitesimal sym-
metries. That is, in the classical case, central elements of the Lie–Poisson algebra
C∞(𝕃∗), and in the quantumcase, the universal enveloping algebras of𝕃. On any orbit
of the symmetry group, these Casimirs are represented by multiplication with a con-
stant. One can therefore extend the coherent space Z without changing the quantum
space by treating the corresponding multiples of the coherent states as new coherent
states of an extended coherent space, whose elements are labeled by pairs of elements
of Z and appropriate multipliers. This turns the algebra of Casimirs into an Abelian
group of symmetries of the extended coherent space, which, together with original
symmetries, provides an action of a central extension of the original symmetry group
as a symmetry group of the extended coherent space.

6.4 Relations to geometric quantization

Often, classical symmetries are promoted to quantum symmetries in a projective rep-
resentation. Then the symmetry group of the extended phase space is a proper central
extension of the symmetry group of the original space. It acts on an extended phase
space, whose dimension is larger. For example, the classical phase space with n spa-
tial degrees of freedom has dimension 2n, but the associated Heisenberg algebra, the
central extension of an Abelian group with 2n generators, has dimension 2n+ 1, as the
canonical commutation relations for the extended Poisson bracket (or in the quantum
case for the commutator) require an additional central generator.

Such a central extension is the rule rather than the exception. The extra di-
mension, often discussed in the context of the Berry phase or geometric phase,
accounts for topological features, such as the Aharonov–Bohm effect. But it also
occurs in classical physics. For example, a classical electromagnetic field exhibits
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6.4 Relations to geometric quantization | 101

topological effects when the field strength is not globally integrable to a vector poten-
tial.

The explicit description of a central extension in terms of the original symmetry
group involves so-called cocycles. Rather thanwith the original symmetry group, one
can indeedwork directly with a central extension of the group, acting on the extended
phase space. (Exampleswhere thisworks are theMöbius space and theKlauder spaces
discussed before.) In thisway, one can avoid the use of cocycles, as the relevant projec-
tive representations become ordinary representations of the central extension. Thus,
the extended description generally reflects the quantumproperties in amore symmet-
ric way than the original coherent space.

In our present setting, the extended phase space is modeled by a projective co-
herent space; see Section 5.8. Projectivity is typically needed when one wants to have
all symmetries of interest represented coherently. In particular, projective coherent
spaces coherently represent central extensions of groups in cases where the original
group is represented by a projective representation that would lead to coherent maps
only up to additional scalar factors called cocycles.

Geometrically, the extended phase space takes the form of a line bundle. In the
case of the Heisenberg algebra, the line bundle is trivial, formed by Z = ℂ × ℂn with
componentwise conjugation, scalar multiplication defined by α(λ, s) := (αλ, s), and
coherent product

K(z, z) := λλesTs/ℏ for z = (λ, s), z = (λ, s).
The foregoing give rise to a projective coherent space Z, whose quantum space ℚ(Z)
is the bosonic Fock space with n independent oscillators, and the coherent states are
the multiples of the Glauber coherent states. Indeed, the coherent states

|λ, s⟩, λ, s ∈ ℂ

in a single-mode Fock space have the Hermitian inner product

⟨λ, s|λ, s⟩ = λλess/ℏ.
The Klauder spaces from Example 5.2.2 extend this construction to an arbitrary finite
or infinite number of modes. In terms of the traditional Fock space description, the
coherent states are the simultaneous eigenstates of the annihilator operators,

a|z⟩ = z|z⟩ for z ∈ Z.

More generally, (see Neumaier & Ghaani Farashahi [212]), Klauder spaces provide
an elegant and efficient approach to the properties of creation and annihilation oper-
ators.

A coherent space generalizes finite-dimensional symplectic manifolds with a po-
larization that induces a complex structure on the manifold. A projective coherent
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102 | 6 Coherent quantum physics

space generalizes a corresponding Hermitian line bundle Z, that is, a line bundle
with a Hermitian connection. Such line bundles are usually discussed in the con-
text of geometric quantization. Geometric quantization (see, for example, Engliš
[82, 83], Schlichenmaier [263], Bar-Moshe & Marinov [25])proceeds from a sym-
plectic manifold 𝕂. It constructs (in the group case in terms of integral cohomology)
a polarization that defines a Hermitian line bundle Z = ℂ𝕂 and an associated Kähler
potential (which is essentially the logarithm of the coherent product). This poten-
tial turns𝕂 into a Kähler manifold with a natural Kähler metric, Kähler measure, and
symplectic Kähler bracket. If the Kähler metric is definite (which is always the case
if Z is a compact symmetric space), there is an associated Hilbert space of square in-
tegrable functions, on which quantized operators can be defined by a recipe of van
Hove [141].

An involutive coherent manifold is a coherent manifold Z equipped with a
smooth mapping that assigns to every z ∈ Z a conjugate ̄z ∈ Z such that z = z and
K(z, z) = K(z, z) for z, z ∈ Z. Under additional conditions, an involutive coherent
manifold carries a canonical Kähler structure, turning it into a Kähler manifold.
For semisimple finite-dimensional Lie algebras, the irreducible highest weight repre-
sentations have nice coherent space formulations. In the literature, the logarithm of
the coherent product figures under the name of Kähler potential. Zhang et al. [316]
relate the latter to coherent states. The coherent quantization of Kähler manifolds is
equivalent to traditional geometric quantization of Kähler manifolds. But in the
coherent setting, quantization is not restricted to finite-dimensionalmanifolds, which
is important for quantum field theory.

The coherent product and the conjugation are C∞-maps on the line bundle. For
this line bundle to exist, the symplectic manifold must also carry a positive definite
Kähler potential F : Z × Z → ℂ, satisfying a generalized Bohr–Sommerfeld quan-
tization condition defined by the integrality of some cohomological expression. In
this case, Z is a projective coherent space with coherent product

K(z, z) := e−F(z,z).
The quantum space of the projective coherent space carries the representation satis-
fying the conditions of a successful geometric quantization. This procedure, called
Berezin quantization, is the most useful way of performing geometric quantization;
see, for example, Schlichenmaier [263].

6.5 Lie ∗-algebras

In order that the quantum space of a coherent space Z can describe physics, one needs
not only a distinguished class of coherent states but amore general concept of state. In
the remainder of this chapter, we give a generalized abstract setting for states in both
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6.6 Quantities, states, uncertainty | 103

classical and quantum mechanics to emphasize the essential mathematical features
and the close analogy between classical and quantum physics.

A (complex) Lie algebra is a complex vector space 𝕃 with a distinguished Lie
product, a bilinear operation on 𝕃, satisfying X ∠X = 0 for X ∈ 𝕃, and the Jacobi
identity

X ∠ (Y ∠ Z) + Y ∠ (Z ∠X) + Z ∠ (X ∠Y) = 0 for X,Y , Z ∈ 𝕃.

A Lie ∗-algebra is a complex Lie algebra 𝕃with a distinguished element 1 ̸= 0, called
one, and a mapping ∗ that assigns to every X ∈ 𝕃 an adjoint X∗ ∈ 𝕃 such that

(X + Y)∗ = X∗ + Y∗, (X ∠Y)∗ = X∗ ∠Y∗,
X∗∗ = X, (λX)∗ = λ∗X∗,
1∗ = 1, X ∠ 1 = 0

for all X,Y ∈ 𝕃 and λ ∈ ℂ with complex conjugate λ∗. We identify the multiples of 1
with the corresponding complex numbers.

A state on a Lie ∗-algebra 𝕃 is a positive semidefinite Hermitian form ⟨⋅, ⋅⟩, anti-
linear in the first argument and normalized such that ⟨1, 1⟩ = 1.

A group G acts on a Lie ∗-algebra 𝕃 if for every A ∈ G there is a linear mapping
that maps X ∈ 𝕃 to XA ∈ 𝕃 such that

(X ∠Y)A = XA ∠YA,

(XA)B = XAB, (XA)∗ = (X∗)A, X1 = X, 1A = 1

for all X,Y ∈ 𝕃 and all A,B ∈ G. Thus, the mappings X → XA are ∗-automorphisms of
the Lie ∗-algebra. Such a family of mappings is called a unitary representation of G
on 𝕃.

Often, unitary representations arise by writing the Lie ∗-algebra 𝕃 as a vector
space of complex n × n matrices, closed under conjugate transposition ∗ and com-
mutation with X ∠Y := iℏ [X,Y], and G as a group of unitary n × n matrices such that
XA := A−1XA ∈ 𝕃 for all X ∈ 𝕃.
6.6 Quantities, states, uncertainty

In classical and quantum physics, physical systems are modeled by appropriate Lie
∗-algebras 𝕃, whose elements are interpreted as the quantities of the system mod-
eled. Each physical system may exist in different instances; each instance specifies
a particular system under particular conditions. A state defines the properties of an
instance of a physical system described by a model, and hence what exists in the
system. Properties depend on the state and are expressed in terms of definite but un-
certain values of the quantities:
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104 | 6 Coherent quantum physics

(GUP) General uncertainty principle: In a given state, any quantity X ∈ 𝕃 has
the uncertain value

X := ⟨X⟩ := ⟨1,X⟩ (6.7)

with an uncertainty of 2

σX := √⟨X − X,X − X⟩ = √⟨X,X⟩ − |X|2. (6.8)

Through (6.7), each state induces an element ⟨⋅⟩ of thedual of𝕃, the space𝕃∗ of linear
functionals on 𝕃.

The identification of formal properties given by uncertain values with real life
properties of a physical system, is done (see the discussion in Section 8.3) by means
of

(CC) Callen’s criterion (Callen [58, p. 15]): Operationally, a system is in a given
state if its properties are consistently described by the theory for this state.

This is enough to find out in each single case how to approximately measure the
uncertain value of a quantity of interest, though it may require considerable experi-
mental ingenuity to do so with low uncertainty. The uncertain value X is considered
informative only when its uncertainty σX is much less than |X|.

As position coordinates are dependent on a convention about the coordinate sys-
tem used, so all system properties are dependent on the conventions under which
they are viewed. To be objective, these conventions must be interconvertible. This is
modeled by a group G of symmetries acting transitively both on the spacetimemani-
foldM considered and on the setW of conventions. We write these actions on the left,
so that A ∈ Gmaps x ∈ M to Ax, and w ∈ W to Aw.

To be applicable to a physical system, a representation of G on the Lie ∗-algebra
𝕃 of quantities must be specified. Depending on the model, this representation ac-
counts for conservative dynamics and the principle of relativity in its nonrelativistic,
special relativistic, or general relativistic situation. It also caters for the presence of
internal symmetries of a physical system. Correspondingly, G may be a group of ma-
trices, aHeisenberg group, theGalilei group, thePoincaré group, or a groupof volume-
preserving diffeomorphisms of a spacetime manifoldM.

A particular physical system in all its views is described by a family of states
⟨⋅, ⋅⟩w indexed by a convention w ∈ W , satisfying the covariance condition

⟨X,Y⟩Aw = ⟨X
A,YA⟩w (6.9)

2 Since the state is positive semidefinite, the first expression shows that σX is a nonnegative real num-
ber. The equivalence of both expressions defining σX follows from ⟨X⟩ = X and⟨X − X,X − X⟩ = ⟨X,X⟩ − ⟨X,X⟩ − ⟨X,X⟩ + ⟨X,X⟩= ⟨X,X⟩ − ⟨X⟩∗X − X∗⟨X⟩ + |X|2 = ⟨X,X⟩ − |X|2.

Brought to you by | Stockholm University Library
Authenticated

Download Date | 10/28/19 5:03 PM



6.6 Quantities, states, uncertainty | 105

for X,Y ∈ 𝕃, w ∈ W , A ∈ G. In particular, uncertain values transform as

⟨X⟩Aw = ⟨X
A⟩w . (6.10)

A subsystem of a particular physical system is defined by specifying a Lie ∗-sub-
algebra and restricting the family of states to this subalgebra.

If (as is commonly done) we work within a fixed affine coordinate system in a
spacetime (homeomorphic to some) ℝd, the only conditions relevant are when and
where a system is described; all other conditions are handled implicitly by covariance
considerations. In this case,W is simply the spacetimeM, and G is the group of affine
translations Tz : x → x + z ofM by z. In this case,

X(x) = ⟨X⟩x , σX(x) = √⟨X,X⟩x −
X(x)

2

define the value X(x) of X at x and its uncertainty σX(x) at x, and (6.9) and (6.10)
become

⟨X,Y⟩x+z = ⟨XTz ,YTz⟩x , ⟨X⟩x+z = ⟨XTz⟩x .

The value X(x) is (in principle) observable with resolution δ > 0 if it varies slowly
with x and has a sufficiently small uncertainty. More precisely, if Δ denotes the set of
spacetime shifts that are imperceptible in the measurement context of interest, ob-
servability with resolution δ requires that

A(x + h) − A(x)
 ≤ δ for h ∈ Δ,

σX(x) ≪
A(x)
 + δ.

We require that the translation group is generated by a covariantmomentum vector
p ∈ 𝕃d with Hermitian components, in the sense that

𝜕
𝜕xν

XTx = pν ∠X (6.11)

for X ∈ 𝕃, x ∈ M, and all indices ν. From the covariance condition (6.9), we conclude
that

𝜕
𝜕xν
⟨X,Y⟩x = ⟨pν ∠X,Y⟩x + ⟨X, pν ∠Y⟩x . (6.12)

In particular, the uncertain values satisfy the covariant Ehrenfest equation

𝜕
𝜕xν
⟨X⟩x = ⟨pν ∠X⟩x . (6.13)

In classical or quantum multiparticle mechanics (as opposed to field theory), space
and time are treated quite differently, and we are essentially in the case d = 1 of the
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above, where the convention about views of system properties is completely specified
by the time t ∈ ℝ. In this case, the above specializes to

X(t) = ⟨X⟩t , σX(t) = √⟨X,X⟩t −
X(t)

2.

The time translation group is generated by a Hermitian Hamiltonian H ∈ 𝕃, so that

d
dt
XTt = H ∠X. (6.14)

d
dt
⟨X,Y⟩t = ⟨H ∠X,Y⟩t + ⟨X,H ∠Y⟩t . (6.15)

In particular, the uncertain values satisfy the Ehrenfest equation

d
dt
⟨X⟩t = ⟨H ∠X⟩t , (6.16)

providing adeterministic dynamics for the q-expectations. This generalizes the Ehren-
fest equation discussed in Section 2.2.

6.7 Examples

1. A simple classical example is 𝕃 = ℂ3, with the cross product as Lie product. It is
isomorphic to the Lie algebra so(3,ℂ), and describes in this representation a rigid
rotator. The dual space𝕃∗ is spanned by the three components of J, and the func-
tions of J2 are the Casimir operators. Assigning to J a particular 3-dimensional vec-
tor with real components (since J has Hermitian components) gives the classical
angular momentum in a particular state.

2. The same Lie algebra is also isomorphic to su(2), the Lie algebra of traceless Her-
mitian 2 × 2 matrices, and then describes a single qubit. In this case, we think
of 𝕃∗ as mapping the three Hermitian Pauli matrices σj to three real numbers Sj,
and extending the map linearly to the whole Lie algebra. Augmented by S0 = 1 to
account for the identity matrix, which extends the Lie algebra to that of all Her-
mitian matrices, this leads to the classical description of the qubit discussed in
Section 8.6.

3. Consider the Lie ∗-algebra 𝕃 of smooth functions f (p, q) on classical phase space
with the negative Poisson bracket as Lie product and ∗ as complex conjugation.
Given a ∗-homomorphism ωwith respect to the associative pointwise multiplica-
tion, determined by the classical values pk := ω(pk) and qk := ω(qk), the states
defined by

⟨X,Y⟩ := ω(X∗Y)
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reproduce classical deterministic dynamics. More generally,𝕃 can be partially or-
dered by defining f ≥ 0 iff f takes values in the nonnegative reals. Given a mono-
tone ∗-linear functional ω on 𝕃, satisfying ω(X∗) = ω(X)∗ for X ∈ 𝕃 and ω(1) = 1,
the states defined by

⟨X,Y⟩ := ω(X∗Y)
reproduce classical stochastic dynamics in the Koopman picture discussed in
Section 7.10. In both cases, ⟨X⟩ = ω(X).

4. The basic example of interest for isolated quantum systems is the Lie ∗-algebra
𝕃(Z) of linear operators acting on the quantum spaceℍ = ℚ(Z) of the coherent
space Z, with Lie product

X ∠B := i
ℏ
[X,B] = i

ℏ
(XB − BX). (6.17)

Note that if no quantities are distinguished, Z s just a Euclidean space ℍ and
𝕃(Z) = Linℍ.
The action of the translation group on X ∈ 𝕃 is given by

XTx := U(x)∗XU(x)
with unitary operatorsU(x) satisfyingU(0) = 1 andU(x)U(y) = U(x+y). The states
of interest are the regular states, defined by

⟨X,Y⟩x = Tr(Yρ(x)X
∗)

for some positive semidefinite Hermitian density operator ρ(x) ∈ ℚ(Z) with
Trρ(x) = 1. In this case, the uncertain values

⟨X⟩x = Tr(Xρ(x))

viewed from x ∈ ℝd are the q-expectations3 of X, and the uncertainty can be
expressed in terms of q-expectations, too. For Hermitian X, it is given by

σX(x) = √⟨X2⟩x − ⟨X⟩2x .

6.8 Coherent chaos

The coherent action principle is the basis of much of traditional numerical quantum
mechanics, which heavily relies on variational methods. It plays an important role in

3 Traditionally, ⟨X⟩ is called the expectation value of X, but such a statistical interpretation is not
needed and is not even possible when X is defective, hence has no spectral resolution.

Brought to you by | Stockholm University Library
Authenticated

Download Date | 10/28/19 5:03 PM



108 | 6 Coherent quantum physics

approximation schemes for the dynamics of quantum systems. Inmany cases, a viable
approximation is obtained by restricting the state vectors ψ(t) to a linear or nonlin-
ear manifold of easily manageable states |z⟩ parameterized by classical parameters z,
which can often be given a physical meaning.

What is commonly called a mean field theory is the simplest coherent state
approximation. This is already much better than a classical limit view, and—in
particular—corrects for the missing zero point energy terms in the latter.

An important application of this situation are the time-dependent Hartree–
Fock equations (see, for example, McLachlan & Ball [183]), obtained by choosing
Z to be a Grassmann space.4 This gives the Hartree–Fock approximation, which is
at the heart of dynamical simulations in quantum chemistry. It can usually predict
energy levels of molecules to within 5% accuracy. Choosing Z to be a larger space (ob-
tained by the methods of Section 5.6) enables one to achieve accuracies approaching
0.001%.

Apart from Hartree-Fock calculations (symmetry group U(N) on coadjoint orbits
of Slater states), this covers Hartree–Fock–Bogoliubov methods (see, for example,
Goodman [102]), which include Bogoliubov transformations to get a quasiparticle pic-
ture (symmetry group SO(2N)), and Gaussianmethods (see, for example, Pattanayak
& Schieve [230], Ono & Ando [226]) used in quantum chemistry (symmetry group
ISp(2N)). There are time-dependent versions of these, and extensions that go beyond
themeanfieldpicture, using eitherHill-Wheeler equations in the generator coordinate
method (see, for example, Griffin & Wheeler [108]) or coupled cluster expansions
(see, for example, Bartlett & Musial [26]) around the mean field.

We now show that the coherent action principle reveals how chaos emerges
through coarse-graining from the exact quantum dynamics, in spite of the linearity of
the Schrödinger equation.

Zhang & Feng [315] use the Dirac–Frenkel variational principle restricted to gen-
eral coherent states to get a semiquantal system of ordinary differential equations
approximating the dynamics of the q-expectations of macroscopic operators of cer-
tain multiparticle systems. At high resolution, this deterministic dynamics is highly
chaotic. This chaoticity is a general feature of approximation schemes for the dynam-
ics of q-expectations or the associated reduced density functions.

Zhang and Feng derive in a purely mathematical way—without referring to prob-
ability or statistics—the equations that they show to be chaotic. Thus, what they do
is completely independent of any particular interpretation of quantum physics. They
construct a semiclassical dynamics (where the relevant operators are replaced by their
q-expectations) and then discuss the resulting system of ordinary differential equa-

4 A Grassmann space is a manifold of all k-dimensional subspaces of a vector space. It is one of the
symmetric spaces.
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6.9 Dynamical Lie algebras | 109

tions. It turns out to be chaotic. The exact quantum dynamics would be given instead
by partial differential equations!

In the overview of their paper, Zhang & Feng [315, pp. 4–9] state that they fo-
cus attention on understanding the question of quantum-classical correspondence
(QCC), the search for an unambiguous classical limit, starting purely from quantum
theory. They explore how, under suitable conditions, classical chaos can emerge nat-
urally from quantum theory. They use the semiquantal method discussed above for
the exploration of the correspondence between quantum and classical dynamics and
quantum nonintegrability. They mention the relations to geometric quantization and
coherent states, andwork in a group theoretic setting corresponding to coherent states
defined by coadjoint orbits of semisimple Lie groups. Their coset space G/H (or rather
a complex line bundle over it arising in geometric quantization and carrying some of
the phase information) discussed in [315, pp. 39] is a coherent space with coherent
product given by their (3.1.8). The variation of the effective quantum action in their
(3.2.11) is the coherent action principle. The result of the variation is (in the regular
case) a symplectic system of differential equations that has a semiclassical (or, as
they say, semiquantal) interpretation. This system gives an approximate dynamics for
the q-expectations of the generators of the dynamical group. This dynamics is chaotic
when the classical limit of the quantum system is not integrable.

6.9 Dynamical Lie algebras

The time-independent Schrödinger equation (6.5) generalizes easily to amore general
implicit Schrödinger equation

I(E)ψ = 0 (6.18)

with an energy-dependent system operator I(E), and ψ in the antidual of some Eu-
clidean spaceℍ. This more general formulation fits naturally the coherent space set-
ting, and everything said so far (corresponding to I(E) = E − dΓ(H)) generalizes to the
general implicit formulation.

A nonlinear I(E) typically appears in reduced effective descriptions of systems de-
rived from a more complicated Hamiltonian setting and in relativistic systems. (The
antidual is needed to account for a possible continuous spectrum.)

This section discusses implicit Schrödinger equations for the exactly solvable
case, where the system operator I(E) is contained in a Lie algebra 𝕃 with known rep-
resentation theory. This is the setting, where a tractable dynamical symmetry group
for the Hamiltonian is known and covers many interesting systems.

For example, the system operator I(E) = p20 −p
2 − (mc)2 with p0 = E/c describes a

free spin 0 particle. This generalizes to a quadratic implicit Schrödinger equation

(π2 − igeℏ
c

S ⋅ F(x) − (mc)2)ψ = 0 (6.19)
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110 | 6 Coherent quantum physics

for a particle of charge e, massm, and arbitrary spin in an electromagnetic field. Here

π = (π0
π
) := p + eℏA(x) (6.20)

is a gauge-invariant 4-vector, S is the 3-dimensional spin vector representing the in-
trinsic angular momentum of a particle of spin j = 0, 12 , 1, . . ., the 3-vector F(x) =
E(x)+ icB(x) is the Riemann–Silberstein vector encoding the electric field E(x) and the
magnetic field B(x), and g is the dimensionless g-factor of themagnetic moment

μs := −
gμB
ℏ

S,

where μB is a constant called the Bohr magneton, and ψ is a wave function with s =
2j + 1 components. For spin j = 1/2, we have s = 2 components. Hence, being second
order, 4 local degrees of freedom, corresponding to the 4 components of the (first-
order) Dirac equation, which is equivalent to the special case g = 2.

In the special case, where the dependence on E is linear, we have

I(E) = EM − N (6.21)

with fixedM,N ∈ 𝕃. This covers the simple case of a harmonic oscillator, whereM = 1,
N = 1

2 (p
2/m + Kq2) is the Hamiltonian, and the Lie algebra is the oscillator alge-

bra, with generators 1, p, q,H (or, in complex form, 1, a, a∗, a∗a). It also covers a fam-
ily of practically relevant exactly solvable systems with Lie algebra 𝕃 = so(2, 1) ⊕ ℂ =
su(1, 1)⊕ℂ discussed in detail in the book byWybourne [310], containing among oth-
ers the case of a particle of massm in a Coulomb field, withM = r = |q| and N = MH,
where

H = 1
2
mv2 − α
|q|

is the Coulomb Hamiltonian.
If I(E) belongs for all E to some Lie ∗-algebra 𝕃 acting in a (reducible or irre-

ducible) representation, then 𝕃 is called a dynamical Lie algebra5of the problem.
In general, the requirement for a dynamical symmetry group is just that all quan-

tities of physical interest in the system can be expressed in the Lie–Poisson algebra
(in the classical case) or the universal enveloping algebra (in the quantum case) of
the corresponding Lie algebra. In this case, the label “dynamical” is a misnomer, and
kinematic symmetry group would be more appropriate. The kinematic symmetry

5 One can always take the dynamical Lie algebra to be the Lie algebra Linℍ of all linear operators on
the nuclear spaceℍ. For this choice, the dynamical Lie algebra offers no advantage over the standard
treatment. Therefore, it is usually understood that the dynamical Lie algebra is much smaller than
Linℍ, although mathematically there is no such restriction.
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6.9 Dynamical Lie algebras | 111

group is an integral part of the Hamiltonian or Lagrangian setting; so one usually gets
it directly from the formulation and a look at the obvious symmetries. For any anhar-
monic oscillator, it is Sp(2); for any system of N particles in ℝ3, it is the symplectic
group Sp(6N), generated by the inhomogeneous quadratics in p and q.

If a problem has a dynamical symmetry group such that the (discrete or contin-
uous) spectrum of all elements of its Lie algebra 𝕃 is exactly computable, then the
spectrum of the system can be found exactly. In the best understood cases, 𝕃 is a
finite-dimensional semisimple Lie algebra. Here everything is tractable more or less
explicitly since the representation theory of these Lie algebras and their correspond-
ing groups is fully understood. A problem solvable in this way is called integrable.

The spectrum of the nonlinear eigenvalue problem (6.18) is the set Spec I of all
E ∈ ℂ such that I(E) is not invertible. In terms of (generalized) eigenvalues and eigen-
vectors of the nonlinear eigenvalue problem,

I(E)|ξ ,E⟩ = λ(ξ ,E)|ξ ,E⟩,

where ξ is a label distinguishing different eigenvectors |ξ ,E⟩ in a (generalized) or-
thonormal basis of the eigenspace corresponding to the eigenvalue E. To cover the
continuous spectrum (where eigenvectors are unnormalized, hence do not belong to
the Hilbert space), we work in a Euclidean space ℍ, on which the Hamiltonian acts
as a linear operator. The Hilbert space of the problem is then the completionℍ of this
space, andℍ ⊆ ℍ ⊆ ℍ× is a Gelfand triple. Therefore,

I(E)|ξ ,E⟩ = 0 whenever λ(ξ ,E) = 0.

Thus,

Spec I = {E ∈ ℝ | λ(ξ ,E) = 0 for some ξ ∈ Spec I(E)}.

Moreover, it is easy to see that all eigenvectors of the nonlinear eigenvalue problem
have the form |ξ ,E⟩. Therefore, the spectrum is given by the set of solutions of the
nonlinear equation λ(ξ ,E) = 0.

Inmany cases of interest (for example, see Section 6.5, when𝕃 is a Lie ∗-algebra),
𝕃 = 𝕃0 ⊕ ℂ; then we may write

I(E) := m(E)X(E) − k(E), (6.22)

wherem(E) and k(E) are scalars not vanishing simultaneously, and X(E) ∈ 𝕃0. If

X(E)|ξ ,E⟩ = ξ |ξ ,E⟩

is a complete system of (generalized) eigenvalues and eigenvectors of X(E), then

I(E)|ξ ,E⟩ = λ(ξ ,E)|ξ ,E⟩, λ(ξ ,E) = m(E)ξ − k(E). (6.23)
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112 | 6 Coherent quantum physics

Therefore,

I(E)|ξ ,E⟩ = 0 whenever λ(ξ ,E) = 0.

Again, all eigenvectors of the nonlinear eigenvalue problem have the form |ξ ,E⟩, and
the spectrum is given by the set of solutions of λ(ξ ,E) = 0.

In the integrable case, one may find the states |ξ ,E⟩ by transforming I(E) to el-
ements from a standard set of representatives of the conjugacy classes, and has to
work out explicit spectral factorizations for these. For semisimple Lie algebras 𝕃 in
finite dimensions, each Lie algebra element is in a Cartan subalgebra, and the latter
are all unitarily conjugate. That is, if V and V  are cartan subalgebras, there is a group
element U such that V  = {adU X | X ∈ V}. So one only has to consider conjugacy in-
side the standard Cartan subalgebra. (In the noncompact case, the eigenvectors corre-
spond to representatives from any conjugacy class, which may be several in the same
irreducible representation). This is enough to give the spectrum, and—in the discrete
case—the full spectral resolution. In the continuous case, one still needs to find the
spectral density and, from it, the S-matrix; see Kerimov [155, 156].
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7 Quantum field theory and quantum statistical
mechanics

This chapter discusses the basics of quantum field theory and its macroscopic conse-
quences, given by quantum statistical mechanics. For simplicity, we concentrate on
4-dimensional relativistic quantum field theory in Minkowski space-time, and ignore
additional problems associated with unsolved problems in gravity.

On the formal (uninterpreted) level, the formal core of quantum physics is valid
for both quantummechanics and quantumfield theory. But since the algebra of quan-
tities considered is different, there are two essential differences between quantumme-
chanics and quantum field theory:

First, in place of position and momentum operators of finitely many particles in
quantum mechanics, one has in quantum field theory operators for fields. Each field
ϕ has a space-time dependence that satisfy Galilei or Poincaré invariance and causal
commutation relations. Thus, each field provides an infinitude of uncertain quan-
titites. More precisely, since from a rigorous point of view, field operators ϕ(x, t) at
spatial position x and time t are distribution-valued operators, the basic quantities in
quantum field theory are smeared fields, local space-time integrals

ϕ(f ) = ∫
Ω

f (x, t)Tϕ(x, t) dx dt

over local patches Ω in space-time, where f is a smooth test function (for example, a
Gaussian), and multipoint generalizations of these.

Second, unlike in quantummechanics, position in quantum field theory is not an
operator but a parameter, hence has no associated uncertainty. The uncertainty is in-
stead in the quantities described by the details of the test functions f , associated with
real field measurements. The fact that in quantum field theory, position is a classical
parameter, whereas in quantummechanics it is an uncertain quantity strongly, affects
the relation between quantum field theory and reality.

In Section 7.1,wedefine themeaningof the general notion of a field for the abstract
setting from Section 6.6 and comments on relativistic quantum field theory at finite
times, a usually much neglected topic. Section 7.2 then shows how coherent spaces
may be used to define relativistic quantum field theories. Nothing more than basic
definitions and properties are given; details will be given elsewhere. Section 7.3 dis-
cusses smeared field expectations and pair correlation functions, which are among
the important computable properties in quantum field theory. They encode most of
what is of experimental relevance in quantum field theory.

All statisticalmechanics is based on the concept of coarse-graining, introduced in
Section 7.5. Statisticalmechanics proper startswith the discussion ofGibbs states (Sec-
tion 7.6) and the statistical thermodynamics of equilibrium and nonequilibrium (Sec-
tion 7.7), leading—for example—to the Navier–Stokes equations of fluid mechanics.

https://doi.org/10.1515/9783110667387-007

Brought to you by | Stockholm University Library
Authenticated

Download Date | 10/28/19 5:03 PM



114 | 7 Quantum field theory and quantum statistical mechanics

Other ways of coarse-graining lead to quantum-classical models (Sections 7.8 and 7.9),
generating amongothers theBorn–Oppenheimer approximationwidelyused inquan-
tum chemistry. Section 7.10 shows in which sense classical statistical mechanics is a
special case of quantum statistical mechanics.

7.1 Fields and their dynamics

The description of dynamics in current relativistic quantum field theory textbooks is a
delicate subject. Inmany such books, physicalmeaning is given only to scattering pro-
cesses, that is, the behavior at asymptotic times t → ±∞, whose statistical properties
are expressed in terms of time-ordered correlation functions. Textbooks commonly re-
strict their attention to the calculation of the low-order contributions to the scattering
amplitudes and how these are renormalized to give finite results. Questions about the
quantumfield dynamics at finite times are not discussed, since the dynamics is deeply
buried under the formal difficulties of the renormalization process needed tomake rel-
ativistic quantumfield theorywork. Sometimes they are even claimed to be impossible
to address!1 However, on the level of rigor customary in theoretical physics, quantum
field dynamics at finite time is actually well-defined in terms of the so-called closed
time path (CTP) approach; see, for example, Calzetta & Hu [59].

In the general Lie algebraic framework of Sections 6.5–6.6, a field is an element
ϕ of the space of 𝕃-valued distributions 𝕃 ⊗ S(M,V)∗, satisfying

𝜕
𝜕xν

ϕ(x) = pν ∠ϕ(x). (7.1)

Here S(M,V)∗ is the dual of the Schwartz space S(M,V) of rapidly decaying smooth
functions onM with values in V (or the space of 𝕃-valued sections of a corresponding
fiber bundle with generic fiber V). Thus, the smeared fields

ϕ(f ) := ∫
M

dxf (x)ϕ(x),

defined for arbitrary test functions f ∈ S(M,V), provide quantities in𝕃. The properties
of fields are primarily functions of the distribution-valued q-expectations

ϕcl(x) = ⟨ϕ(x)⟩0

1 For example, Scharf [261] writes in his introduction to Chapter 2: “The more one thinks about this
situation, the more one is led to the conclusion that one should not insist on a detailed description of
the system in time. From the physical point of view, this is not so surprising, because in contrast to
non-relativistic quantum mechanics, the time behavior of a relativistic system with creation and an-
nihilation of particles is unobservable. Essentially only scattering experiments are possible, therefore
we retreat to scattering theory. One learns modesty in field theory.”
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7.1 Fields and their dynamics | 115

of fields and the distribution-valued Greens functions

W(x, y) = ⟨ϕ(x),ϕ(y)⟩0

of field products at some fixed spacetime origin 0. After smearing with test functions,
these distributions produce proper numbers. A comparison of (7.1) with (6.11) shows
that

ϕ(x + z) = ϕ(x)Tz .

As a consequence, field expectations from different spacetime views satisfy

⟨ϕ(x)⟩z = ⟨ϕ(x + h)⟩z−h,

showing that the choice of a fixedorigin is inessential; a changeof origin only amounts
to a spacetime translation.

We also see that for any quantity A ∈ 𝕃, the definition

A(x) := ATx for x ∈ M

defines a field. These fields are more regular than the fields occurring in relativistic
quantum field theory; the latter are proper distributions.

Since the traditional Schrödinger picture breaks manifest Poincaré invariance,
relativistic quantum field theory is almost always treated in the Heisenberg picture.
The Heisenberg dynamics on the fields is given by

𝜕
𝜕xν

ϕ(x) = pν ∠ϕ(x),

where pν is the νth operator component of the 4-momentum vector p, defined as the
generator of the translations of the Poincaré group. In particular, the physical Hamil-
tonian H = cp0, where c is the speed of light, is obtained after the construction of the
N-point functions (q-expectations of fields and q-correlations) as the operator gener-
ating the time shift of the fields.

In place of the time-dependent q-expectations in the nonrelativistic setting dis-
cussed before, we consider q-expectations dependent on a space-time location x in
Minkowski space, and require that the resulting space-time dependent q-expectations
⟨A⟩x satisfy the covariant Ehrenfest equation (6.13). One easily concludes that for ar-
bitrary space-time points x, y, z,w, . . . ,

⟨ϕ(z)⟩x = ⟨ϕ(z + x − y)⟩y ,

generalizing the nonrelativistic (2.11), and

⟨ϕ(z)ϕ(w) ⋅ ⋅ ⋅⟩x = ⟨ϕ(z + x − y)ϕ(w + x − y) ⋅ ⋅ ⋅⟩y .
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116 | 7 Quantum field theory and quantum statistical mechanics

Therefore, the complete spacetime-dependence of q-expectations, and in particular
their dynamics, is determined by the q-expectations at any particular fixed space-time
position.

From the covariant Ehrenfest picture, wemay nowdeduce a covariant Schrödin-
ger picture by writing

⟨A⟩x := Tr ρ(x)A

with a space-time dependent density operator ρ. Then (6.13) becomes the covariant
von Neumann equation

iℏ 𝜕
𝜕xν

ρ(x) = [pν , ρ(x)].

The rank is preserved. Hence, if ρ has rank 1, this is equivalent with writing ρ(x) =
ψ(x)ψ(x)∗, where ψ(x) satisfies the covariant Schrödinger equation

iℏ 𝜕
𝜕xν

ψ(x) = pνψ(x).

After rescaling by the speed of light, we may define a 4-dimensional time tν = xν/c
and a 4-dimensional energy Hν = cpν that turn this equation into a perfect covariant
analogue

iℏ 𝜕
𝜕tν

ψ(x) = Hνψ(x).

of the nonrelativistic Schrödinger equation. Thus it seems that in quantum field
theory, time and energy—not as usually said, space and momentum—have become
4-dimensional! Ordinary time and energy are just the components t0 and E0.

7.2 Coherent spaces for quantum field theory

The techniques of geometric quantization do not easily extend (except on a case by
casebasis) to the quantizationof infinite-dimensionalmanifolds,whichwouldbenec-
essary formodeling quantumfield theories. However, the coherent space approach ex-
tends to quantum field theory. The coherent manifolds are now infinite-dimensional,
and their topology is more technical to cope with than in the finite-dimensional case.
The process of second quantization is such an example of quantization of infinitely
many degrees of freedom. Thus, second quantized calculations become tractable via
infinite-dimensional coherent spaces. For example, the calculus of creation and anni-
hilation operators was developed in Neumaier & Ghaani Farashahi [212] in terms of
Klauder spaces, giving simple proofs of many standard results on calculations in Fock
spaces.
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7.2 Coherent spaces for quantum field theory | 117

The groups that can be most easily quantized are infinite-dimensional analogues
of the symplectic, orthogonal and (for fixed particle number) unitary groups, Kac–
Moody groups, some related groups, and their abelian extensions. For example, the
homogeneous quadratic expressions in finitely many creation and annihilation oper-
ators form a symplectic Lie algebra in the Boson case (CCR), and an orthogonal Lie
algebra in the Fermion case (CAR); see Zhang et al. [316].

This explains why knowing the representation theory of these groups (in the form
of implications for their coherent spaces) is important.

Free quantum field theories are essentially the large N limit of the finite case.
Large N amounts to discretizing configuration space or momentum space, keeping
only N degrees of freedom. This is the basis of lattice methods. The thermodynamic
limit N → ∞ creates convergence problems—one has to struggle to avoid undefined
expressions producing the infamous “infinities”. The correct way to do this requires
some functional analysis and introduces cocycles (that, for finite N, are trivial, and
hence can be avoided). For actual calculations (by computer), one needs everything
as explicitly as possible, and coherent spaces yield explicit formulas for the things of
interest.

In quantum field theory, one needs to take the limit analytically rather than nu-
merically, and a key problem is to decide when these limits exist, and whether one
can find them constructively enough to get useful conclusions. Using these formulas
allows one to replace theusual long-winded calculationswith operators in the second-
quantized formalism by fairly short arguments.

Somework on infinite-dimensional versions is available. In particular, for Bosons,
one needs the metaplectic representation of infinite-dimensional symplectic groups,
constructed in terms of Gaussians, and for Fermions one needs the spin representa-
tion of infinite-dimensional orthogonal groups, constructed in terms of Pfaffians. The
paper Gracia-Bondía & Várilly [105], though not very readable, contains lots of de-
tails (but not in terms of coherent spaces), and shows that the representation theory
is enough to settle the case of quantum electrodynamics (QED) in an external field.
This is easier than full QED since the field equations are linear. Themathematical chal-
lenge is the extension to nonlinear fields. (In [105], applications to the nonlinear case
are promised for a follow-up paper, but such a paper never appeared.) In QED proper,
asymptotic electrons are infraparticles (cf. item 9 in Section 14.3) rather than standard
massive particles. Though we do not have a conventional Fock space, the asymptotic
structure of QED is reasonably well understood. See, for example, the work by Herde-
gen [124, 125] and Kapec et al. [152].

Measures in infinite dimensions. For the quantization of infinite-dimensional
manifolds, the Hilbert space is traditionally constructed as a space of integrable func-
tions with respect to a measure on the manifold. Constructing the right measure is
difficult since there is no translation invariant measure that could take the place of
Lebesgue measure in finite dimensions. Thus, geometric quantization becomes an ad
hocprocedure in eachparticular case.On theotherhand, the coherent space approach
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118 | 7 Quantum field theory and quantum statistical mechanics

generalizes, without severe problems, to infinite dimensions. Second quantization
thus appears as the theory of highest weight representations of infinite-dimensional
Lie groups, or rather its coherent space version, which is somewhat simpler to man-
age. That itworks in 2 dimensional spacetime is illustrated by the success of conformal
field theory, which has a rigorousmathematical description in terms of highest weight
representations of the Virasoro group.

This relation between the quantum world and the classical is important in quan-
tum field theory when it comes to the explanation of perturbatively inaccessible phe-
nomena, such as particle states corresponding to solitons, or tunneling effects related
to instantons; see Jackiw [145]. However, his explanations are mathematically vague.
A coherent space setting makes this mathematically rigorous, at least in the semiclas-
sical approximation.

Form factors. Form factors appear as coefficients of operators in the algebra of
quadratics in the defining fields satisfying a conservation law (that is, vanishing diver-
gence). They determine the possible interactionswith gauge fields. A good description
of form factors requires a detailed knowledge of the causal irreducible representations
of the Poincaré group. See, for example, Weinberg [294, 295], and Klink [162]; the re-
sults there are not manifestly covariant. The coherent space approach can be used to
give nicer, manifestly covariant formulas. The form factors of a theory are needed for
a subsequent analysis of spectral properties, such as the Lamb shift in QED.

Causal coherentmanifolds.A spacetime is a smooth realmanifoldM with a Lie
group 𝔾(M) of distinguished diffeomorphisms, called spacetime symmetries and a
symmetric, irreflexive causality relation × onM preserved by𝔾(M). We say that two
sections j, k of a vector bundle overM are causally independent andwrite this as j×k
if

x × y for x ∈ Supp j, y ∈ Supp k.

Here Supp j denotes the support of the function j.
A causal coherent manifold over a spacetime M is a coherent manifold Z with

the following properties:
(i) The points of Z form a real vector space of smooth sections of a vector bundle

overM.
(ii) The symmetries in𝔾(M) act as unitary coherent maps.
(iii) The coherent product satisfies the following causality conditions:

K(j, j) = 1 if j × j or j || j (7.2)
K(j + k, j + k) = K(j, j) if j × k × j. (7.3)

Examples of important spacetimes include:
(i) Minkowski spacetime M = ℝ1×d with a Lorentzian inner product of signature
(+1,−d) and x × y iff (x − y)2 < 0. Here d is the number of spatial dimensions; most
often d ∈ {1, 3}.𝔾(M) is the Poincaré group ISO(1, d).
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7.3 Observability in quantum field theory | 119

(ii) Euclidean spacetimeM with x×y iff x ̸= y. Two Euclidean cases are of particular
interest:

(iii) For Euclidean field theory, M = ℝ4 and 𝔾(M) is the group ISO(4) of Euclidean
motions.

(iv) For chiral conformal field theory,M is the unit circle and𝔾(M) is the Virasoro
group. Its center acts trivially onM, but not necessarily on bundles overM.

To give examples of a causal coherent manifold, we mention that from any Hermitian
quantum field ϕ of a relativistic quantum field theory satisfying the Wightman ax-
ioms, for which the smeared fieldsϕ(j) (with suitable smooth real test functions j) are
self-adjoint operators, and any associated state ⟨⋅⟩; the definition

K(j, j) := ⟨e−iϕ(j)eiϕ(j
)⟩

defines a causal coherent manifold.
There are many known classes of relativistic quantum field theories satisfying

these properties in 2 and 3 spacetime dimensions. Under additional conditions one
can conversely derive from a causal coherent manifold the Wightman axioms for an
associated quantum field theory. In 4 spacetime dimensions, only free and quasifree
examples satisfying the Wightman axioms are known. The question of the existence
of interacting relativistic quantum field theories in 4 spacetime dimensions is com-
pletely open.

Many tools from finite-dimensional analysis, in particular the Lebesgue integral,
Liouville measure, and averaging over compact sets must be replaced by more un-
wieldy constructs, and limits need much more careful considerations. Lack of heed-
ing this would lead to the familiar ultraviolet (UV) divergences and infrared (IR) diver-
gences of conventional quantum field theories. The IR and UV divergences go away if
the mathematically rigorous and correct considerations are applied. This can be seen
in quantum field theories in 2 and 3 spacetime dimensions.

It is an open problem how to achieve the same in interacting quantum field the-
ories in the most important case, 4-dimensional spacetime. There it is only known
how to avoid the UV divergences, using careful distribution splitting techniques in
the context of causal perturbation theory (Scharf [261]). However, this approach only
gives constructions for asymptotic series and misses the nonperturbative contribu-
tions needed for a rigorous definition of interacting relativistic quantum field theories
in 4 spacetime dimensions.

7.3 Observability in quantum field theory
The most directly observable features of a macroscopic system modeled by quantum
field theory are theq-expectations of smeared versions of themost important quantum
fields, integrated over cells of macroscopic or mesoscopic size. Indeed, statistical me-
chanics allows one to derive for the q-expectations of the fields the equations of state
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120 | 7 Quantum field theory and quantum statistical mechanics

of equilibrium thermodynamics for cells of macroscopic size in thermal equilibrium,
and the hydromechanical equations for cells of mesoscopic size in local equilibrium.
Both are known to yield excellent macroscopic descriptions of matter.

For macroscopic systems, one must necessarily use a coarse-grained description
in terms of a limited number of parameters. In the quantum field theory of macro-
scopic objects, any averaging necessary for applying the law of large numbers is al-
ready done inside the definition of the macroscopic (that is, smeared) operator to be
measured. As shown in statistical mechanics, this is sufficient to guarantee very small
uncertainties ofmacroscopic q-observables. Thus, onedoes not need an additional av-
eraging in terms of multiple experiments on similarly prepared copies of the system.
This is the deeper reasonwhy quantum field theory canmake accurate predictions for
single observations of macroscopic systems.

The q-expectations ⟨ϕ(x)⟩of fields are distributions that produce the—inprinciple
approximatelymeasurable—numbers ⟨ϕ(f )⟩when integrated over sufficiently smooth
localized test functions f . Certain q-correlations, q-expectation of a product of oper-
ators at pairwise distinct points, are also measurable in principle by probing the state
with external fields in linear or nonlinear response theory. See, for example, Hänggi
& Thomas [113] for classical correlations and Davies & Spohn [65] for quantum corre-
lations.

Scattering experiments provide further observable information, about time-
ordered multipoint correlations of these fields. The related S-matrices also appear
in microlocal kinetic descriptions of dilute macroscopic matter at the level of the
Boltzmann equation or the Kadanoff–Baym equations. These are derived from the
q-expectations of products of fields at two different space-time points. (The kinetics
of the Boltzmann equation derived from the particle picture has long been replaced
by more accurate Kadanoff–Baym equations derived from field theory.)

2-point correlations in quantum field theory are effectively classical observables;
indeed, in kinetic theory they appear as the classical variables of the Kadanoff-
Baym equations, approximate dynamical equations for the 2-point functions. After
a Wigner transform and some further approximation (averaging over small cells in
phase space), these turn into the classical variables of the Boltzmann equation. After
integration over momenta and some further approximation (averaging over small
cells in position space), these turn into the classical variables of the Navier-Stokes
equation, hydromechanic equations that describe the behavior of macroscopic fluids.
For macroscopic solids, one can use similar approximations to arrive at the equations
of elasticity theory. The most detailed classical level, the Kadanoff-Baym equations,
still contains the unsmeared ensemble means of field products.

There is nothing in quantum field theory apart from q-expectations of the fields
and q-correlations. The quantities accessible to an observer are those q-expectations
and q-correlations, whose arguments are restricted to the observer’s world tube. More
precisely, what we can observe is contained in the least oscillating contributions to
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7.4 Currents | 121

these q-expectations and q-correlations. The spatial and temporal high-frequency
part is unobservable due to the limited resolution of our instruments.

All macroscopic objects are objects describable by hydromechanics and elasticity
theory; so their classical variables have the same interpretation. Thus, the quantum-
mechanical ensemble averages are classical variables. Moreover, because of the law of
large numbers, ⟨f (x)⟩ ≈ f (⟨x⟩) for any sufficiently smooth function f of not too many
variables. (These caveats are needed because high dimensions and highly nonlinear
functions do not behave so well under the law of large numbers.) In particular, we get
fromEhrenfest’s theorem (2.9) the standard classicalHamiltonian equations ofmotion
for macroscopic objects.

Statisticalmechanics shows that theuncertainties in themacroscopically relevant
smeared fields scale with the inverse square root of the cell volume. This means that
integrals over ⟨Φ(x, t)⟩ are macroscopically meaningful only to an accuracy of order
V−1/2, where V is the volume occupied by the mesoscopic cell containing x, assumed
to be homogeneous and in local equilibrium. This is the standard assumption for de-
riving from first principles hydrodynamical equations and the like. It means that the
interpretation of a field getsmore fuzzy as one reduces the amount of coarse graining—
until at some point the local equilibrium hypothesis is no longer valid.

Everything deduced in quantumfield theory aboutmacroscopic properties ofmat-
ter in local equilibrium or dilute matter in the kinetic regime follows, and one has
a completely self-consistent setting. The transition to classicality is automatic and
needs no deep investigations: The classical situation is simply the limit of a huge num-
ber of degrees of freedom, where the law of large numbers discussed in Section 3.6
reduces the uncertainty to a level below measurement accuracy.

7.4 Currents

We consider the example of modeling an electric current. From a quantum field theo-
retical point of view, an electric current consists (in the situation to be discussed here)
of the motion of the electron field in a wire at room temperature. In the field theoretic
description, one has a fermionic effective electron field ψ(x), and the theoretically ex-
act current density is described by the distribution-valued q-expectation

Jμ(x) = Tr ρjμ(x)

determined by the current operator

jμ(x) = −e : ψ(x)γμψ(x) : .

Here the colons denote normal ordering, and ρ is the density operator describing (in
the Heisenberg picture) the exact state of the quantum field. Denoting byk the Boltz-
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122 | 7 Quantum field theory and quantum statistical mechanics

mann constant, we define the entropy operator2 of a positive definite state by

S := −k log ρ, (7.4)

so that ρ = e−S/k . This expression for S is exact by definition; in actual numerical
work, approximations are introduced when one replaces the exact S by a numerically
tractable expression. In particular, close to thermal equilibrium, it is well-established
empirical knowledge that we have

S ≈ (H + PV − μN)/T ;

equality defines exact equilibrium. We can substitute this (or a more accurate non-
equilibrium) approximation into the defining formula for J(x) to compute a numerical
approximation.

Ignoring reading uncertainties, one measures—in practice—always an electric
current of the form

I(t) = ∫ dzht(z) ⋅ J(x + z) (7.5)

flowing at time t through a cross section of the galvanometer. Here ht(z) is a smearing
function that is negligible for z larger than the size of the current-sensitive part of the
galvanometer. The precise h can be found by calibration.

The smearing is needed for mathematical reasons to turn the distribution-valued
current into an observable numerical vector, and for physical reasons, since a meter
measuring the current is insensitive to very high spatial or temporal frequencies. This
smearing has nothing to do with coarse-graining: It is also needed in already coarse-
grained classical field theories. For example, in hydromechanics, the Navier–Stokes
equations generally have only weak (distributional) solutions that make numerical
sense only after smearing.

Thus, in field theory, the quantum situation is not very different from the classi-
cal situation. Nowhere in our exposition was any statistical argument used; the trace
(which in traditional statistical mechanics gets a statistical interpretation) is simply a
calculational device for managing the q-expectations.

For other currents everything is analogous. On the basis of relativistic and nonrel-
ativistic scattering theory (Haag [110], Ruelle [253], Sandhas [259]), it can be shown
that one can canonically associate with every bound state of a Poincaré invariant rela-
tivistic or Galilei invariant nonrelativistic quantum field theory a distinguished effec-
tive 4-vector current operator. This allows one to represent all asymptotic scattering
phenomena using currents in place of particles, giving a finite time quantum field
picture of these processes.

2 This name seems appropriate since ⟨S⟩ = Tr ρS = −k Tr ρ log ρ agrees with the traditional entropy.
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7.5 Coarse-graining

The same system can be studied at different levels of resolution. When we model a
dynamical system classically at high enough resolution, it must be modeled stochas-
tically since the quantum uncertainties must be taken into account. But at a lower
resolution, one can often neglect the stochastic part and the system becomes deter-
ministic. If it were not so, we could not use any deterministic model at all in physics,
but we often do, with excellent success.

Coarse-graining explains the gradual emergence of classicality, due to the law of
large numbers to an ever increasing accuracy as the sizes of the objects grow. The
quantum dynamics changes gradually into classical dynamics. The most typical path
is through nonequilibrium thermodynamics (see Section 7.7). There are also interme-
diate stages modeled by quantum-classical dynamics (see Section 7.8); these are used
in situations where the quantum regime is important for some degrees of freedom but
not for others. In fact, there is a wide spectrum of models leading from full quantum
models over various coarse-grainedmodels to models with a fully classical dynamics.
One typically selects from this spectrum the model that, given a desired accuracy, is
most tractable computationally.

A coarse-grained model is generally determined by singling out a vector space R
of relevant quantities, whose q-expectations are the variables in the coarse-grained
model. If the coarse-grained model is sensible, one can describe a deterministic
or stochastic reduced dynamics of these variables alone, ignoring all the other q-
expectations that enter the deterministic Ehrenfest dynamics (see Section 2.2) of the
detailed description of the system.

Note that the same situation in the reduced description corresponds to a multi-
tude of situations of the detailed description. Hence, each of its realizations belongs to
different values of the q-expectations in the environment, slightly causing the realiza-
tions to differ. Thus, any coarse-graining results in small prediction errors, which usu-
ally consist of neglecting certain experimentally inaccessible high-frequency effects.
These uncontrollable errors are inducedby the variables in the environment and intro-
duce a stochastic element in relation to the experiment even when the coarse-grained
description is deterministic.

To give a concrete example of coarse-graining, we mention Jeon & Yaffe [149],
who derive the hydrodynamic equations from quantum field theory for a real scalar
fieldwith cubic and quartic self-interactions. To do so, they identify field expectations
with the classical values of the field.

There are many systems of practical interest, where the most slowly varying de-
grees of freedom are treated classically, whereas the most rapidly oscillating ones are
treated in a quantum way. The resulting quantum-classical dynamics, discussed in
Section 7.8, also constitutes a form of coarse-graining. The approximation of fields
(with an infinite number of degrees of freedom) by finitely many particles is also a
form of coarse-graining.
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124 | 7 Quantum field theory and quantum statistical mechanics

In the context of coarse-graining models given in a Hamiltonian quantum frame-
work, the Dirac–Frenkel variational principle (which in a coherent space setting is
the coherent action principle of Section 6.1)may be profitably used for coarse-graining
whenever a pure state approximation is reasonable. This principle is based on the fact
that the integral

I(ψ) = ∫ψ(t)∗(iℏ𝜕t − H)ψ(t) dt = ∫(iℏψ(t)
∗ψ̇(t) − ψ(t)∗Hψ(t)) dt (7.6)

is stationary iff ψ satisfies the time-dependent Schrödinger equation iℏψ̇(t) = Hψ(t).
Suppose now that a family of pure states ϕz (depending smoothly on a collection z
of labels ranging over a coherent space) is believed to approximate the class of states
realized in Nature, we may make the coarse-graining ansatz

ψ(t) = ϕz(t)

and determine the time-dependent parameters z(t) by finding the differential equa-
tion for the stationary points of I(ϕz), varied over all smooth functions z(t). This vari-
ational principle was first used by Dirac [69] and Frenkel [91], and found numerous
applications; see Kramer & Saraceno [166].

A typical phenomenon arising in coarse-grainedmodels of detailed quantum sys-
tems involving a large environment is decoherence; see, e. g., Schlosshauer [264,
265]. It says that in a suitable reduced description, the density operators soon get very
close to diagonal, recovering after a very short decoherence time aKoopmanpicture of
classical mechanics. Therefore, decoherence provides, in principle (though it is rarely
viewed in these terms), a reduction of the quantum physics of an open system to a
highly nonlinear classical stochastic process.

Systematic projection operator or path integral techniques for coarse-graining in
more general situations, givena fundamental quantumfield theoretic description, can
be found in Balian [20], Calzettta & Hu [59], Grabert [104], and Rau & Müller
[245]. In general, once the choice of the resolution of modeling is fixed, this fixes the
amount of approximation tolerable in the ansatz, and hence the necessary list of ex-
tensive quantities. What is necessary is not always easy to see, but can often be in-
ferred from the practical success of the resulting coarse-grained model.

7.6 Gibbs states

The detailed state of a quantum system can be found with a good approximation only
for fairly stationary sources of very small objects, of which sufficiently many can be
prepared in essentially the same quantum state. In this case, one can calculate suf-
ficiently many expectations by averaging over the results of multiple experiments on
these objects, and use these to determine the state via some version of quantum state
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tomography [309]. Except in very simple situations, the result is a mixed state de-
scribedby adensity operator.Mixed states are necessary also to properly discuss prop-
erties of subsystems (see Chapter 15 of the Appendix) and for the realistic modeling of
dissipative quantum systems by equations of Lindblad type (Lindblad [174]). Even
for the multiphoton states used to experimentally check the foundations of quantum
physics, quantum opticians use density operators and not wave functions, since the
latter do not provide the efficiency information required to rule out loopholes.

Although only a coarse-grained description of a macroscopic system can be ex-
plicitly known, this does not mean that the detailed state does not exist. The existence
of an exact state for large objects has always been taken as a metaphysical but unques-
tioned assumption. Even in classical mechanics, it was always impossible to know the
exact state of the solar systemwith sun, planets, asteroids, and comets treated as rigid
bodies. But before the advent of quantum mechanics shattered the classical point of
view, its existence was never questioned.

In quantumstatisticalmechanics, one only considers states that areGibbs states,
that is, described by density operators of the form3

ρ := e−S/k , (7.7)

wherek is the Boltzmann constant and S is a self-adjointHermitian quantity, called the
entropyof the system in thegiven state. (The traditional entropy is theuncertain value
⟨S⟩ of the present quantity S.) Note that a unitary transform ρ = UρU∗ of a Gibbs state
by a unitary operator U is again a Gibbs state. Indeed, the entropy of the transformed
state is simply S = USU∗. This shows that the notion of a Gibbs state is dynamically
well-behaved; the von Neumann dynamics ensures that we get a consistent evolution
of Gibbs states.

By construction, the density operator (7.7) is the complete, exact description of
the state, not a coarse-grained one. However, the exact S is usually unknown, and one
obtains a coarse-grained reduced description by replacing the exact S with a suitable
approximate S given by a more tractable parameterized expression.

The simplest and perhaps most important case of a Gibbs state is that of an equi-
librium state of a pure substance, defined by the formula

S = (H + PV − μN)/T ,

3 This is only a slight restriction of generality, excluding certain more idealized states, for example,
pure states. All states, including the idealized ones, are obtainable as limits of Gibbs states. This is
because the positive definite density operators are dense in the set of all density operators, and every
positive definite density operator is a Gibbs state. Indeed, being trace class and Hermitian, a density
operator is self-adjoint, andpositive definiteness implies the existence of the self-adjoint entropy oper-
ator S = −k log ρ, showing that (7.7) holds. In particular, it is experimentally impossible to distinguish
between a pure state and Gibbs states sufficiently close to the pure state.
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126 | 7 Quantum field theory and quantum statistical mechanics

where H is the Hamiltonian, V is the system volume, N a nonrelativistic number op-
erator, and temperature T, pressure P, and chemical potential μ are parameters.
This represents equilibrium states in the form of density operators corresponding to a
grand canonical ensemble, ρ = e−β(H+PV−μN), where β = 1/kT.

A complete derivation of equilibrium thermodynamics in terms of grand canon-
ical ensembles is given in Chapter 10 of Neumaier & Westra [214]. In this develop-
ment, there is nomention of size. The latter matters only when one wants to conclude
exact thermodynamic results, since then the thermodynamic limit (infinite volume
limit) has to be taken into account to reduce the uncertainty to zero.

A realistic system is never exactly in equilibrium, but if it is sufficiently close to
equilibrium, the entropy S is well-approximated by its equilibrium expression (H +
PV − μN)/T. The residual term H + PV − μN − ST, which vanishes at equilibrium,
contains the detailed information thrown away in the equilibrium approximation.

7.7 Nonequilibrium statistical mechanics

In most coarse-grained models used in statistical mechanics, the form assumed for
the entropy operator S is a linear combination of relevant quantities, whose q-
expectations define the extensive variables of the description. The corresponding
coefficients are parameters characterizing the particular state of the reduced system;
they are referred to as the intensive variables of the description. Extensive variables
scale linearly with the size of the system (whichmight be mass, or volume, or another
additive parameter), whereas intensive variables are invariant under a change of sys-
tem size. We do not use the alternative convention to call “extensive” any variable
that scales linearly with the system size, and “intensive” any variable that is invariant
under a change of system size.

If the relevant quantities depend on continuous variables, which is the case in
nonequilibrium situations, the extensive and intensive variables become fields de-
pending on the continuum variables used to label the subsystems. For extensive vari-
ables, the integral of their field quantities over the label space gives the bulk value of
the extensive quantity; thus the fields themselves have a natural interpretation as a
density. For intensive variables, an interpretation as a density is physically meaning-
less; instead, they have a natural interpretation as field strengths, sources for ther-
modynamic forces given by their gradients.

In statisticalmechanics,wedistinguish four nested levels of thermal descriptions,
depending on whether the system is considered to be in global, local, microlocal, or
quantum equilibrium. The highest and computationally simplest level, global equi-
librium, is concerned with macroscopic situations characterized by finitely many
space- and time-independent variables.

The next level, local equilibrium, treats macroscopic situations in a continuum
mechanical description, leading, for example, to the Navier–Stokes equations of fluid
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mechanics. Here the equilibrium subsystems are labeled by the space coordinates.
Therefore, the relevant variables are finitely many space- and time-dependent fields.
The entropy operator S becomes time-dependent and is represented as a spatial inte-
gral

S(t) := ∫ s(t, x) dx

with a spatial entropy density s(t, x). For a pure monatomic substance, the latter is in
the nonrelativistic case of the form

s(t, x) = (ε(t, x) + p(t, x) − μ(t, x)ρ(t, x))/T(t, x),

where ε(t, x) and ρ(t, x) are the internal energy density and themass density operators
of a quantum field theory, whose expectations give extensive densities, and T(t, x),
p(t, x), and μ(t, x) are intensive coefficient fields defining the local temperature, pres-
sure, and chemical potential. (In the relativistic case, similar but more involved ex-
pressions are used, and the identification of temperature and pressure is convention-
dependent.)

The next deeper level,microlocal4 equilibrium, treats mesoscopic situations in
a kinetic description, where the equilibrium subsystems are labeled by phase space
coordinates. This leads, for example, to the Boltzmann equation or the Kadanoff–
Baym equations. The relevant variables are now finitely many fields, depending on
time, position, and momentum; see Balian [20] and Rau & Müller [245]. Now the
entropy operator S is represented (in the nonrelativistic case) as a phase space inte-
gral

S(t) := ∫ s(t, x, p) dx dp

with a phase space entropy density s(t, x, p) linearly expressed in terms of Wigner-
transformed operators of a quantum field theory, whose expectations give extensive
phase space densities.

The bottom level is the microscopic regime, where we must consider quantum
equilibrium. This no longer fits a thermodynamic framework, but must be described
in termsof quantumdynamical semigroups anddynamical equations of Lindblad type
(Lindblad [174]).

Each description level may be considered as a special case of each more detailed
description level. For example, global equilibrium is a special case of local equilib-
rium; the extensive variables in the single-phase global equilibrium case have con-
stant densities.

4 The term microlocal for a phase space dependent analysis is taken from the literature on partial
differential equations; see, for example, Martinez [180]. A more traditional nomenclature would call
this the kinetic regime.
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In phenomenological approaches to nonequilibrium thermodynamics, the en-
tropy operator is written as a linear combination

S = (H −∑
j
αjXj)/T ,

of relevant extensive quantities Xj, when space is not resolved, and a corresponding
density form, when space is resolved to local equilibrium. (In microlocal equilibrium,
temperature T is no longer well-defined, and the linear combination is written dif-
ferently.) In each case, the relevant quantities are precisely those variables that are
observed tomake a difference inmodeling the phenomenon of interest. Table 7.1 gives
typical extensive variables (S and Xj), their intensive conjugate variables (T and αj),
and their contribution (TS and αjXj) to the Euler equation

H = TS +∑
j
αjXj (7.8)

resulting from the definition of the entropy. Some of the extensive variables and their
intensive conjugates are vectors or (in elasticity theory, the theory of complex fluids,
and in the relativistic case) tensors; see Balian [19] for the electromagnetic field and
Beris & Edwards [36], Öttinger [224] for complex fluids.

Table 7.1: Typical conjugate pairs of thermal variables and their contribution to the Euler equation.
The signs are fixed by tradition. (In the gravitational term,m is the vector with componentsmj , the
mass of a particle of kind j, g the acceleration of gravity, and h the height.)

Extensive Xj Intensive αj Contribution αjXj

entropy S temperature T thermal, TS

particle number Nj chemical potential μj chemical, μjNj
conformation tensor C relaxation force R conformational∑ RjkC jk

strain εjk stress σjk elastic,∑ σjkεjk

volume V pressure −P mechanical, −PV
surface AS surface tension γ mechanical, γAS
length L tension J mechanical, JL
displacement q force −F mechanical, −F ⋅ q
momentum p velocity v kinetic, v ⋅ p
angular momentum J angular velocity Ω rotational, Ω ⋅ J

charge Q electric potential Φ electrical, ΦQ
polarization P electric field strength E electrical, E ⋅ P
magnetizationM magnetic field strength B magnetical, B ⋅M
electromagnetic field F electromagnetic field strength −F s electromagnetic, −∑ F sμνF

μν

massM = m ⋅ N gravitational potential gh gravitational, ghM
energy-momentum U metric g gravitational,∑gμνUμν
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In general, which quantities need to be considered depends on the resolution with
which the system is to be modeled—the higher the resolution, the larger the family
of extensive quantities. Whether we describe bulk matter, surface effects, impurities,
fatigue, decay, chemical reactions, or transition states, the general setting remains the
same, since it is a universal approximation scheme, whereas the number of degrees
of freedom increases with increasingly detailed models.

7.8 Conservative mixed quantum-classical dynamics

TheKoopman representationmakes classical systems lookquantum. It is alsopossible
to makes quantum systems look classical. The resulting quantum-classical dynamics
has important applications.

Since the differences between classical mechanics and quantum mechanics dis-
appear in the Ehrenfest picture in favor of the common structure of a classical Hamil-
tonian dynamics, we can use this framework tomix classicalmechanics and quantum
mechanics. The resulting quantum-classical dynamics is described in many places,
such as in Peres & Terno [234], Kapral & Ciccotti [153], Prezhdo & Kisil [243],
Prezdho [242], Breuer & Petruccione [53]. The derivation of quantum-classical dy-
namics from pure quantum dynamics in these papers follows (under well-understood
conditions) from the principles of statistical mechanics of q-expectations and belongs
to the formal core of quantum physics, as it does not depend on any measurement is-
sues.

There are many systems of practical interest, which are treated in a hybrid
quantum-classical fashion, where the most slowly varying degrees of freedom are
treated classically, whereas themost rapidly oscillating ones are treated in a quantum
way.

The basic equations for a large class of quantum-classical models are, in the
Schrödinger picture, the Liouville equation

iℏρ̇ = [H(p, q), ρ] (7.9)

and the Hamilton equations

q̇ = Tr ρ 𝜕
𝜕p

H(p, q), ṗ = − Tr ρ 𝜕
𝜕q

H(p, q). (7.10)

Here q = q(t), p = p(t) are classical, time-dependent variables, not quantum oper-
ators. H(p, q) is, for any fixed p, q, a linear operator on some Euclidean space ℍ of
smooth wave functions, and ρ = ρ(t) is a time-dependent density operator onℍ. The
sufficiently nice functions of q-expectations

⟨A(p, q)⟩ = Tr ρA(p, q), (7.11)
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where A is a (p, q)-dependent operator on a nuclear space, are classical quantities
forming a commutative algebra. In terms of q-expectations, we have

Ȧ = ⟨H ∠A⟩,

and in particular

q̇ = ⟨ 𝜕
𝜕p

H(p, q)⟩, ṗ = −⟨ 𝜕
𝜕q

H(p, q)⟩,

This looks like the original form of the Ehrenfest equations (2.10), except that on the
left-hand side, we have classical variables and no expectations. The expected energy
⟨H(p, q)⟩ is conserved.

The quantum-classical dynamics preserves the rank of the density ρ. In particular,
if ρ has the rank 1 form

ρ = ψψ∗ (7.12)

at some time, it has at any time the form (7.12) with time-dependent ψ. The fact that
ρ has trace 1 translates into the statement that the state vector ψ is normalized to
ψ∗ψ = 1. As discussed in detail in Section 2.6, the Liouville equation (7.9) holds iff
the state vector ψ, determined by (7.12) up to a phase, satisfies—for a suitable choice
of the phases—the Schrödinger equation

iℏψ̇ = H(p, q)ψ.

In terms of the state vector, q-expectations now take the familiar form

⟨A(p, q)⟩ = ψ∗A(p, q)ψ.

The quantum-classical dynamics is commonly discussed in the Schrödinger picture,
but it is independent of the picture used. The equivalent Heisenberg dynamics is

d
dt
A = 𝜕A
𝜕q
⟨
𝜕H
𝜕p
⟩ −
𝜕A
𝜕p
⟨
𝜕H
𝜕q
⟩ +

i
ℏ
[H ,A],

where now ⟨⋅⟩ is the fixed Heisenberg state. From this, one can immediately see that
everything depends only on q-expectations by taking expectations in this equation,

d
dt
⟨A⟩ = ⟨𝜕A

𝜕q
⟩⟨
𝜕H
𝜕p
⟩ −⟨
𝜕A
𝜕p
⟩⟨
𝜕H
𝜕q
⟩ +⟨

i
ℏ
[H ,A]⟩. (7.13)

This is now a fully deterministic equation for q-expectations of the mixed quantum-
classical model, considered in the Ehrenfest picture. This is now themost natural pic-
ture, since we still get a Hamiltonian description of the form (2.14). But now the Lie
algebra is the direct product of the Lie algebra of the classical subsystem and the Lie
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7.9 Important examples of quantum-classical dynamics | 131

algebra of the quantum subsystem. This results in a nonlinear dependence on expec-
tations. Such nonlinearities are common for reduced descriptions obtained by coarse-
graining (see Section 7.6), both fromapurequantum theory or fromaclassical stochas-
tic theory (in the Koopman representation discussed in Section 7.10). Since quantum-
classical systems (at least as they appear in the literature) are also coarse-grained de-
scriptions, there is nothing surprising in that the same phenomenon occurs.

In the Schrödinger picture and the Heisenberg picture, the description of a
quantum-classical system looks different from that in the purely classical and purely
quantum case.

New in quantum-classical systems—compared to pure quantum dynamics—is
that in the Heisenberg picture, the Heisenberg state occurs explicitly in the differen-
tial equation for the dynamics. But it does not take part in the dynamics, as it should
be in any good Heisenberg picture. The state dependence of the dynamics is not a
problem for practical applications since the Heisenberg state is fixed anyway by the
experimental setting.

7.9 Important examples of quantum-classical dynamics

There are many examples of quantum-classical dynamics of practical importance.
Probably the most important quantum-classical system is a version of the Born–

Oppenheimer approximation of molecules, widely used in quantum chemistry. Here
the nuclei are described in terms of classical phase space variables, whereas the elec-
trons are described quantum mechanically by means of a state vector ψ in a Hilbert
space of antisymmetrized electron wave functions.

A spinning relativistic electron, though having no purely classical description,
can be modeled quantum-classically by classical phase space variables p, q, and a
quantum 4-component spin with Hamiltonian

H(p, q) = α ⋅ p + βm + eV(q) (7.14)

is a 4×4matrix parameterized by classical 3-vectors p = p(t) and q = q(t), ρ = ρ(t) is a
positive semidefinite 4 × 4 matrix of trace 1, and the trace in equation (7.11) is just the
trace of a 4×4matrix. One gets the equations (7.9) and (7.10) fromDirac’s equation and
Ehrenfest’s theorem by an approximation involving coherent states for position and
momentum. This is just a toy example; more useful field theoretic quantum-classical
versions (see, for example, Gérard et al. [95]) lead towell-knownVlasov equations for
(p, q)-dependent 4 × 4 densities, describing a fluid of independent classical electrons
of the form (7.14).

Other examples include the Schrödinger-Poisson equations in semiconductor
modeling and the quantum Boltzmann equation, with spin represented by 4 × 4 (or
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132 | 7 Quantum field theory and quantum statistical mechanics

in the nonrelativistic case 2× 2) matrices parameterized by classical phase space vari-
ables. (On the other hand, the quantum-Boltzmann equation for spin zero is already a
purely classical equation, since all its dynamical variables are mutually commuting.)

With even more realism, one needs to add to quantum-classical descriptions (see
Section 7.8) a dissipative collision term accounting for interactions, and (7.14) is no
longer adequate but needs additional stochastic terms.

7.10 Koopman’s representation of classical statistical mechanics

Classicalmechanics can bewritten in a form that looks like quantummechanics. Such
a form was worked out by Koopman [165] for classical statistical mechanics. In the
special case, where one restricts the expectation mapping to be a ∗-algebra homo-
morphism, all uncertainties vanish, and the Koopman representation describes de-
terministic classical Hamiltonian mechanics.

We discuss classical statistical mechanics in terms of a commutative Euclidean
∗-algebra𝔼of randomvariables, that is, Borelmeasurable complex-valued functions
on a Hausdorff space Ω, where bounded continuous functions are strongly integrable,
and the integral is given by ∫ f := ∫ dμ(X)f (X) for some distinguished measure μ. (For
a rigorous treatment see Neumaier & Westra [214].) The quantities and the density
operator ρ are represented by multiplication operators in some Hilbert space of func-
tions on phase space. The classical Hamiltonian H(p, q) is replaced by the Koopman
Hamiltonian

Ĥ := 𝜕H(p, q)
𝜕q

i 𝜕
𝜕p
−
𝜕H(p, q)
𝜕p

i 𝜕
𝜕q
.

Then both in classical and in quantum statistical mechanics, the state is a density op-
erator. The only difference between the classical and the quantum case is that in the
former case, all operators are diagonal. In particular, the classical statistical mechan-
ics of macroscopic matter is also described by (diagonal) Gibbs states.

As discussed in Section 2.2, functions of expectations satisfy a Hamiltonian dy-
namics given by a Poisson bracket. It is not difficult to show that the Koopman dy-
namics, resulting in this way from the Koopman Hamiltonian, exactly reproduces the
classical Hamiltonian dynamics of arbitrary systems, in which the initial condition
is treated stochastically. The Koopman dynamics is—like von Neumann’s dynamics—
strictly linear in the density matrix. But the resulting dynamics is highly nonlinear
when rewritten as a classical stochastic process. This is a paradigmatic example for
how nonlinearities can naturally arise from a purely linear dynamics.

Because of the Koopman representation, everything said in the following about
quantum statistical mechanics applies as well to classical statistical mechanics.
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8 Requirements for good foundations

In this chapter, we inquire how foundations independent of measurement could look
like.

Section 8.1 briefly reviews Born’s rule, the core of the traditional interpretation
and its limitations (discussed in detail in Chapter 14 of the Appendix). Section 8.2 dis-
cusses the reasonswhy the axiomaticmethodmade geometry and number theory self-
interpretingmature theories. Section 8.3 poses the questionwhether quantumphysics
can be given a similar status as geometry, and introduces Callen’s criterion as the ap-
propriate bridge between theory and reality. Section 8.4 discusses requirements for
objective properties relevant for quantum theory. Section 8.5 treats the question of
how the universe may be considered as a quantum system. The final Section 8.6 gives
a classical view of the qubit, known by Malus and Stokes already long before the ad-
vent of quantummechanics. It gives a model for a successful interpretation of certain
quantum phenomena in fully realistic terms.

8.1 Interpreting the formal core
Das Quadrat |bnm|2 ist gemäß unserer Grundhypothese die Wahrscheinlichkeit dafür, daß das Sys-
tem sich nach Ablauf der Störung im Zustand m befindet.
[…] eine gewisse Wahrscheinlichkeit dafür besteht, daß das Atom im n-ten Zustand ist. Wir be-
haupten nun, daß alsMaß dieser Zustandswahrscheinlichkeit die Größe |cn|2 = |∫ψ(x, t)ψ∗n (x)dx|

2

zu wählen ist.
Max Born, 1927 [45, p. 171]

To me it must seem a mistake to permit theoretical description to be directly dependent upon acts
of empirical assertions.

Albert Einstein, 1949 [80, p. 674]

In Section 2.1, we presented Axioms (A1)–(A6) defining the formal core of quantum
physics. In addition to these formal axioms, one needs at least a rudimentary inter-
pretation relating the formal part to experiments.

The followingminimal interpretation seems to be universally accepted:
(MI) Upon measuring at times tl (l = 1, . . . , n) a vector X of q-observables with

commuting components, for a large collection of independent identical (particular)
systems closed for times t < tl, all in the same state

ρ(tl) = ρ (l = 1, . . . , n)

(one calls such systems identically prepared), the measurement results are statisti-
cally consistent with independent realizations of a random vector X with measure as
defined in Axiom (A5).

https://doi.org/10.1515/9783110667387-008
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136 | 8 Requirements for good foundations

Note that (MI) is no longer a formal statement since it neither defines what
measuring is, nor what measurement results are, and what statistically con-
sistent or independent identical system means. Thus, (MI) has no mathematical
meaning—it is not an axiom, but already part of the interpretation of formal quantum
physics.

(MI) relates the axioms to a nonphysical entity, the social conventions of the com-
munity of physicists. The terms “measuring”, “measurement results”, and “statisti-
cally consistent” already have informalmeaning in the reality as perceived by a physi-
cist. Everything stated in Axiom (MI) is understandable by every trained physicist.
Thus, statement (MI) is not an axiom for formal logical reasoning, but a bridge to infor-
mal reasoning in the traditional cultural setting that defines what a trained physicist
understands by reality.

The lack of precision in statement (MI) is on purpose, since it allows the state-
ment to be agreeable to everyone in its vagueness; different philosophical schools can
easily fill it with their own understanding of the terms in a way consistent with the
remainder.

Interpretational axioms necessarily have this form, since they must assume some
unexplained common cultural background for perceiving reality. (This is even true
in pure mathematics, since the language stating the axioms must be assumed to be
common cultural background.)

(MI) is what every traditional interpretation I know of assumes at least implicitly
in order to make contact with experiments. Indeed, all traditional interpretations I
know of assume much more, but they differ a lot in what they assume beyond (MI).

Everything beyond (MI) seems to be controversial; see Schlosshauer [264] and
[265, Chapter 8]. In particular, already what constitutes a measurement of X is contro-
versial. (For example, reading a pointer, different readers may read marginally differ-
ent results. What is the true pointer reading? Does passing a beam splitter or a polar-
ization filter count as a measurement?)

Thus,measurement should not figure at all in the foundations of physics. The case
for this was already vividly made by Bell [32]. Note that Born’s probability interpre-
tation was originally phrased in a factual language that did not involve the notion of
measurement: “The square |bnm|2 is according to our basic hypothesis the probability
for the system to be in state m after completion of the interaction […] there is a certain
probability that the atom is in the nth state. We now claim that as measure for this prob-
ability of state, one must choose the quantity |cn|2 = |∫ψ(x, t)ψ∗n (x)dx|

2.”
An analysis given in Chapter 14 of the Appendix shows that actual measurement

practice is in conflictwith the traditional foundations, due to a far too idealized viewof
measurement. More specifically, the unrestricted rule (MI) implies the universal Born
rule discussed in Section 14.2 of the Appendix. Therefore, the critique of the universal
Born rule given in Section 14.3 also applies (MI). Thus, (MI) can be valid only for a
restricted class of measurements.
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8.2 The interpretation of mature theories | 137

8.2 The interpretation of mature theories
In speaking of the copy and the original wemay assume that words are akin to thematter which they
describe; when they relate to the lasting and permanent and intelligible, they ought to be lasting
and unalterable, and, as far as their nature allows, irrefutable and immovable-nothing less. But
when they express only the copy or likeness and not the eternal things themselves, they need only
be likely and analogous to the real words. As being is to becoming, so is truth to belief.

Plato, Timaeus, ca. 360 BC [239, par.29]

6. Mathematische Behandlung der Axiome der Physik.
Durch die Untersuchungen über die Grundlagen der Geometrie wird uns die Aufgabe nahe gelegt,
nach diesem Vorbilde diejenigen physikalischen Disciplinen axiomatisch zu behandeln, in de-
nen schon heute die Mathematik eine hervorragende Rolle spielt; dies sind in erster Linie die
Wahrscheinlichkeitsrechnung und die Mechanik. […] Soll das Vorbild der Geometrie für die Be-
handlung der physikalischen Axiome maßgebend sein, so werden wir versuchen, zunächst durch
eine geringe Anzahl von Axiomen eine möglichst allgemeine Klasse physikalischer Vorgänge zu um-
fassen. […] ’Das Endziel’, so hat Weierstrass einmal gesagt, ’welches man stets im Auge behalten
muß, besteht darin, daßman über die Fundamente derWissenschaft ein sicheres Urteil zu erlangen
suche’.

David Hilbert, 1900 [132]

If we conceive Euclidean geometry as the science of the possibilities of the relative placing of actual
rigid bodies and accordingly interpret it as a physical science, and do not abstract from its original
empirical content, the logical parallelism of geometry and theoretical physics is complete.

Albert Einstein, 1934 [79, p. 165]

The ordinary language, (spiced with technical jargon for the sake of conciseness) is thus insepara-
bly united, in a good theory, with whatever mathematical apparatus is necessary to deal with the
quantitative aspects. It is only too true that, isolated from their physical context, the mathemati-
cal equations are meaningless: but if the theory is any good, the physical meaning which can be
attached to them is unique.

Leon Rosenfeld, 1957 [250, p. 41]

I feel induced to contradict emphatically an opinion that Professor L. Rosenfeld has recently uttered
in a meeting at Bristol, to the effect that a mathematically fully developed, good and self-consistent
physical theory carries its interpretation in itself, there can be no question of changing the latter, of
shuffling about the concepts and formulae.

Erwin Schrödinger, 1958 [270, p. 170]

A great physical theory is not mature until it has been put in a precise mathematical form, and it is
often only in such a mature form that it admits clear answers to conceptual problems.

Arthur Wightman, 1976 [303, p. 158]

In spite of the interpretational chaos just mentioned, there is an informal consensus
on how to perform measurements in practice. Good foundations, including a good
measurement theory, should be able to properly justify this informal consensus by
defining additional formal concepts about what constitutes measurement. To be sat-
isfying, these must behave within the theory just as their informal relatives with the
same name behave in reality.
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138 | 8 Requirements for good foundations

This informal consensus is achieved elsewhere in physics through the axiomatic
method, a tradition started and promoted by David Hilbert. He wrote in 1924 the first
(and very influential) textbook on mathematical physics (Courant & Hilbert [62]),
created the concept of a Hilbert space, and contributed in 1928 significantly to the
foundations of quantum physics (Hilbert et al. [133]).1

In his famous 1900 address, Hilbert [132] clarified, in the context of the sixth
problem, what an axiomatization of physics should mean: “The investigations on the
foundations of geometry suggest the problem: To treat in the same manner, by means
of axioms, those physical sciences in which already today mathematics plays an impor-
tant part.” This is a quest for giving axioms for probability (done by Kolmogorov in
1933) and mechanics (at that time only classical mechanics, but today it means quan-
tum mechanics) that share the clarity and interpretation independence of geometry
achieved through the axiomatic method.

The purpose of a system of axioms is to separate the stuff that is problematic but
peripheral from the stuff that is essential and allows rational deductions. This enables
getting universal agreement about the essence of a theory, without being entangled
with controversies about their interpretation.

Axioms specify in unambiguous terms all properties that are ascribed to the con-
cepts used, whereas interpretation rules tell informally (and in detail often debatably)
how these concepts are applied asmodels of the realworld. Thus, the axiomsprecisely
define what the theory is about, and the interpretation rules use the concepts defined
by the theory and apply them informally to the intended aspects of reality.

According to Hilbert, one can study how to achieve an informal consensus about
the interpretation of a mature theory by looking at the modern account of the oldest
of the physical sciences, Euclidean geometry. Indeed, for Euclidean geometry, consid-
ered as a branch of physics, there is a complete consensus about how, on laboratory
scales, theory and reality correspond.2

One first defines the corresponding calculus and names the quantities that can
be calculated from quantummechanical models (or models of the theory considered)
with the appropriate names from experimental geometry. Thus, initially, a circle was

1 It is no accident that today’s quantummechanics is based on Hilbert spaces rather than wave func-
tions and their probability interpretation!
2 Older, in today’s view nonaxiomatic interpretation rules for Euclidean geometry are ambiguous and
approximate, of the kind:
A point is what has no parts.
A point is an object without extension.
A point is a mark on paper.
These are three different, mutually incompatible but common interpretation rules for a point.
This sort of observations prompted Hilbert to promote the axiomatization of theories as a means for
making the content of a theory as precise as possible, separating the objective substance from the
controversial philosophy.
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8.2 The interpretation of mature theories | 139

a material object with a round shape, and the mathematical circle was an abstraction
of these.

The Pythagoreans (and later Descartes andHilbert with evenmore precision) then
developeda theory that gives aprecise formalmeaning to all the geometrical concepts.
This is pure mathematics, today encoded in textbook linear algebra and analytic ge-
ometry. The theory and the nomenclature were developed with the goal of enabling
this identification in a way consistent with tradition.

Startingwith Plato, the theory took precedence, defining objective truth—the per-
fect, unalterable concept. What was found through experience was viewed as subjec-
tive belief—an approximate, imperfect realization, an analogous copy of the theoret-
ical concept.

This was done by declaring anything in real life resembling an ideal point, line,
plane, circle, et cetera, to be a point, line, plane, circle, et cetera, if and only if it can
be assigned in an approximate way (determined by the heuristics of traditional mea-
surement protocols, whatever they are) the properties that the ideal point, line, plane,
circle, et cetera, has, consistent to the assumed accuracy with the deductions from
the theory. If the match is not good enough, we can explore whether an improvement
can be obtained bymodifyingmeasurement protocols (devisingmore accurate instru-
ments or more elaborate error-reducing calculation schemes, et cetera), or by modify-
ing the theory (to a non-Euclidean geometry, say, which uses the same concepts, but
assumes slightly different properties relating them).

No significant philosophical problems are left; lucent, intuitive, and logically im-
peccable foundations for Euclidean geometry were established in this way. This indi-
cates the maturity of Euclidean geometry as a scientific discipline.

The same holds for number theory defined by the Peano axioms, as the following
parable (a modified version of [210]) shows:

Once upon a time – not long after Viete had introduced his innovative concept of variables –,
Dnikeded, an ambitious student of math, was sitting in Prof. Onaep’s class, then the leading ca-
pacity in the field of applied algebra. He is reading one of Onaep’s exercises: “I is a rebmun. If Z is a
rebmun then ZI is a rebmun. If ZI=YI then Z=Y. Never ZI=I. Every rebmun is generated in this way.”

Dnikeded has not the slightest idea what his professor is talking about. He had never heard of any-
thing called rebmun. Determined to figure out the meaning and being already familiar with Viete’s
work, he plays with the statements given.

Well, at least he knows that I is a rebmun. Setting Z=I he discovers that II is a rebmun. Setting Z=II
he discovers that III is a rebmun. Setting Z=III he discovers that IIII is a rebmun. Setting Z=IIII he
discovers that IIIII is a rebmun. This reminds him of counting. Each new rebmun is obtained by
adding an I to the previous rebmun. The process goes on for ever….

Remembering what he had learnt already about algebra, Dnikeded noticed that the rebmuns could
be interpreted in terms of stuff he was familiar with – numbers. If he identified I with 1 then he could
equate II with 2, III with 3, IIII with 4, IIIII with 5, etc. “Ah, this is a variant of the way we count
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140 | 8 Requirements for good foundations

the number of beers in the pub,” he thought, “except that each 5th bar would be drawn vertically,
a minor issue that doesn’t really change things.”

But well, there were more properties: If ZI=YI then Z=Y. “True – if my friend and I both order a beer
and then have the same number of beers, we must have had the same number of beers before. Thus
Onaeps theory is predictive, and things come out correctly. Let me try the next item, never ZI=I; can
I falsify my interpretation?” He tries and finds no problem with it – I is too short to be of the form ZI.

Dnikeded is left with the final statement to be figured out. He thinks about what he can generate so
far: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, . . . a never ending list of numbers. But neither 0 nor fractions like 2/3.
Also no negative numbers. Suddenly everything makes sense. “Ah, I finally understand. Rebmuns
are nothing else than the numbers I have been familiar with since childhood, before I got interested
in more advanced numbers!”

When Dnikeded compared his solution of the exercise with that of his friend Rotnac, he noticed
that the latter had another way of interpreting Onaep. He had also played with the statements in
Onaep’s riddle and associated it with marbles in his pocket. He linked changing Z to ZI to putting
a new marble into the pocket. Starting with the empty pocket that contained no marble, he got the
correspondence I=0, II=1, III=2, IIII=3, etc..

Both Dnikeded and Rotnac tried to figure out who made an error and whose interpretation was
defective. But they couldn’t findone. So theywent toOnaep, asking for his judgment. Onaepdeclared
both interpretations to be valid.

Indeed, the modern concept of natural numbers (based on the Peano axioms) exists
in two forms, and the two different traditions have two different interpretations, de-
pending on whether they call 0 a natural number (for example, friends of C++ and set
theorists) or whether they do not (for example, friends of Matlab and everyone before
Cantor).3 The two interpretations are related by the fact that x → x + 1 is an isomor-
phismbetween the two. This is analogous to the interpretation of classicalmechanics,
which is unique only up to the choice of an orthonormal coordinate system. In the lat-
ter case, a rigid motion provides the necessary isomorphism.

Thus, once a theory is mature, the identification with real life is done in terms
of the formal, purely mathematical theory developed, giving an interpretation to the
theory. In this way, physics inherits the clarity of mathematics, the art and science of
precise concepts and relations.

In particular, with the Lagrangian and Hamiltonian formulations, classical me-
chanics has also reached the status of maturity, and hence is perceived bymost physi-
cists as clear and philosophically unproblematic.

In summary, foundations should be concise, unambiguous, and simple. The only
way to get sound, unambiguous foundations of a theory of physics is to give clear, fully
precise axioms for the formal,mathematical part, then describe its consequences, and

3 I belong to the second category and believe that 0 is an unnatural number since it took ages to
discover 0, and many more centuries to declare it natural. I have never seen anyone count 0, 1, 2, 3….
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finally, with the conceptual apparatus created by the theory (of course with lots of
hindsight, arrivedat throughprior, less rigorous stages) to specify the conditionswhen
it applies to reality in a more informal way, but still attempting to preserve as much
clarity as possible.

Note that one cannot separate the mathematics of a theory from its physics.
A mathematical theory is a theory of physics once its concepts agree with those of
a branch of physics, and its assumptions and conclusions can be brought into cor-
respondence with physical reality, no matter how informal (or even unspoken) the
interpretation rules are.

8.3 Is quantum physics a mature theory?
Operationally, a system is in an equilibrium state if its properties are consistently described by ther-
modynamic theory.

Herbert Callen, 1975 [58, p. 15]

To define quantum physics (or any other physical theory) properly, including a logi-
cally impeccable interpretation, one should, therefore, proceed as in Euclidean geom-
etry and classical mechanics.

Onefirst needs to define the corresponding calculus; this has alreadybeendone in
Section 2.1. Then one has to name the quantities that can be calculated from quantum
mechanical models (or models of the theory considered) with the appropriate names
the experimental physicists use for organizing their data.

One can then develop a theory that gives a precise formal meaning to the con-
cepts physicists talk about. This is pure mathematics—the shut-up-and-calculate part
of quantum physics.

Finally, one needs an interpretation of the theory, that is, the identification with
real life. At first it seems trivial to make this precise—just state Born’s rule. But Born’s
rule contains the notion of “measuring”—what does this mean, in precise terms? This
opens a Pandora box….

Let me give a concrete example. To define what it means to measure a time inter-
val, we cannot proceed without first having a definition of the unit of time in which to
make the measurement. The official definition [221] is:

“The second is the duration of 9 192 631 770 periods of the radiation corresponding to the transition
between the two hyperfine levels of the ground state of the Cesium 133 atom.”

To be able to make sense of this interpretation rule, one needs to assume a lot of de-
tailed theory of quantummechanics—formal mathematical theory of what can be de-
duced from the formal axioms for quantum mechanics (this makes no reference to
reality). This is required to understand the meaning of ground state of an atom and
what its hyperfine levels are. We also need rules that tell us the real life meaning of a
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Cesium 133 atom—how to verify that an atom claimed to be a Cesium 133 atom actu-
ally is a Cesium 133 atom. More formal theory enters the relation between theory (the
notion of a “second”) and reality (what the notion means).

One also needs to assume some additional informal rules that tell how tomeasure
transitions between two energy levels, and how to prepare a Cesium 133 atom so that
the quantity described can be measured. To understand the latter, one needs more
results fromquantummechanics of the formal,mathematical kind, andmore informal
rules that tell how these results are interpreted in an experiment. To understand these,
one needs…. et cetera.

One ends up with a whole book onmeasurement theory instead of simple axioms
for the interpretation. Whereas it is not unreasonable to have such a book, it is unrea-
sonable to have a book-sized axiom system.

Fortunately, such a book-sized axiom system is not needed: All it takes to recog-
nize aCesium133 atom is to verify that it behaves like the theoreticalmodel of a Cesium
133 atom—bywhatever experimentators learn how to do it. This is indeed the only cri-
terion; if an atom does not behave like that, we conclude with certainty that it is not
a Cesium 133 atom. Thus, the whole book-sized axiom system is implied by the theory
together with a single criterion,

(CC) Callen’s criterion: Operationally, a system is in a given state if its properties
are consistently described by the theory for this state.

This generalizes the way H. B. Callen justified in the above quote phenomenolog-
ical equilibrium thermodynamics in his famous textbook (Callen [58]). At first sight,
this sounds like a circular definition (and indeed Callen classifies it as such). But a
closer look shows there is no circularity since the formal meaning of “consistently de-
scribed by thermodynamic theory” is already known. The operational definition sim-
ply moves this formal meaning from the domain of theory to the domain of reality by
defining when a real system deserves the designation “is in an equilibrium state”. In
particular, this definition allows one to determine experimentally whether or not a
system is in equilibrium.

For quantum physics, Callen’s criterion asserts that we may declare anything in
real life resembling an ideal photon, electron, atom, molecule, crystal, ideal gas, et
cetera, to be a photon, electron, atom, molecule, crystal, ideal gas, et cetera, if and
only if it can be assigned in an approximateway (determined by the heuristics of tradi-
tional measurement protocols, whatever that is) the properties that the ideal photon,
electron, atom, molecule, crystal, ideal gas, et cetera, has, consistent to the assumed
accuracy with the deductions from the theory.

In practice, relevant quantities and corresponding states are assigned to real life
situations bywell-informed judgment concerning the behavior of the equipment used.
The validity of the assignment is experimentally tested by comparing experimental re-
sultswith the chosenmathematicalmodel. As postulated by Callen, themodel defines
the meaning of the concepts: The theory defines what an object is.
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Callen’s criterion is enough to find out in each single case how to approximately
measure the uncertain value of a quantity of interest, though it may require consid-
erable experimental ingenuity to do so with low uncertainty. The uncertain value X
is considered informative only when its uncertainty σX is much less than |X|. The re-
quired identification process is fairly independent of thewaymeasurements are done,
as long as they are capable to produce the required accuracy for the matching. Hence
it carries no serious philosophical difficulties.

In general, any successful theory must be crafted in such a way that it actually
applies to reality—otherwise the observed properties cannotmatch the theoretical de-
scription. On the other hand, as Callen’s criterion notes,we already need the theory to
define precisely what it is that we observe.

As a result, theoretical concepts and experimental techniques complement each
other in a way that, when a theory reaches maturity, it has developed its concepts to
the point where they are a good match to reality. Thus, we may say the following:

(R) Something in real life “is” an instance of the theoretical concept if it matches
the theoretical description sufficiently well.

If the match between theory and observation is not good enough, we can ex-
plore whether an improvement can be obtained bymodifyingmeasurement protocols
(devising more accurate instruments or more elaborate error-reducing calculation
schemes, et cetera), or by upgrading the theory to another theory that uses the same
concepts, but assumes slightly different properties relating them. The latter happened
in the past for Newton’s mechanics, which was upgraded to relativity theory.

It is not difficult to check that this holds not only in physics, but everywherewhere
we have clear concepts about some aspect of reality. Indeed, Rule (R) just amounts to
a definition of what it means of something in real life to “be an X”, where X is defined
as a theoretical concept.

In general, an interpretation of a mature theory, that is, its identification with
real life, is given in terms of the formal theory developed by means of Callen’s criterion
(CC) or its more informal rendering (R). This criterion is sufficient to precisely deter-
mine the interpretation only if the theory is indeedmature and fully reflects everything
of relevance for its interpretation. It does not work if the theory—as the traditional
foundation of quantum physics given by the 7 basic rules of Section 1.1—invokes in its
axioms the notion of measurement without saying anything about what on the formal
level counts as a measurement!

Nearly 100 years of modern quantum physics established informally that quan-
tum theory is indeed an appropriate and complete model for the physical aspects of
reality. On this basis, one should be able to study the measurement problem rigor-
ously: One declares that a real detector (in the sense of a complete experimental ar-
rangement, including the numerical postprocessing of raw results that gives the final
result) performs a realmeasurement of an ideal quantity if and only if the following
holds: Modeling the real detector as a macroscopic quantum system (with the prop-
erties assigned to it by statistical mechanics/thermodynamics) predicts rawmeasure-
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ments such that, in the model, the numerical postprocessing of the raw results that
gives the final result is in sufficient agreement with the value of the ideal quantity in
the model.

Then measurement analysis is a scientific activity like any other, rather than a
philosophical prerequisite for setting up a consistently interpreted quantum physics.
Indeed, this is theway high-precision experiments are designed and analyzed in prac-
tice.

8.4 Objective properties
The scientist […] appears as realist insofar as he seeks to describe a world independent of the acts
of perception; as idealist insofar as he looks upon the concepts and theories as the free inventions
of the human spirit (not logically derivable from what is empirically given); as positivist insofar
as he considers his concepts and theories justified only to the extent to which they furnish a log-
ical representation of relations among sensory experiences. He may even appear as Platonist or
Pythagorean insofar as he considers the viewpoint of logical simplicity as an indispensable and
effective tool of his research. [original italic in bold]

Albert Einstein, 1949 [80, p. 684]

Some people are hoping to reintroduce determinism in some way, perhaps by means of hidden vari-
ables or something like that, but it just doesn’t work according to the accepted ideas. I might add
that personally I still have this prejudice against indeterminacy in basic physics. I have to accept it
because we cannot do anything better at the present time. It may be that in some future develop-
ment we shall be able to return to determinism, but only at the expense of giving up something else,
some other prejudice which we hold to very strongly at the present time.

Paul Dirac, 1972 [72, p. 7]

[Quantummechanics] is fundamentally about the results of ‘measurements’, and therefore presup-
poses in addition to the ‘system’ (or object) a ‘measurer’ (or subject). […] the theory is only approx-
imately unambiguous, only approximately self-consistent. […] it is interesting to speculate on the
possibility that a future theory will not be intrinsically ambiguous and approximate. Such a the-
ory could not be fundamentally about ‘measurements’, for that would again imply incompleteness
of the system and unanalyzed interventions from outside. Rather it should again become possible
to say of a system not that such and such may be observed to be so but that such and such be
so. The theory would not be about ‘observables’ but about ‘beables’. These beables […] should, on
the macroscopic level, yield an image of the everyday classical world, […] the familiar language
of everyday affairs, including laboratory procedures, in which objective properties – beables – are
assigned to objects.

John Bell, 1972 [31, p. 687]

One of the basic problems with the traditional interpretations of quantummechanics
is the difficulty to specify precisely what counts as real. The physics before 1926 was
explicitly about discovering and objectively describing the true, reliably repeatable
properties of Nature, seen as objectively real.

After the establishment of modern quantum physics, the goal of physics can (ac-
cording to the traditional interpretations of quantum mechanics) only be much more
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modest, to systematically describe what physicists measure. Nonetheless, physics
continues to make objective claims about reality that existed long before a physicist
performed the firstmeasurement, such as the early history of the universe, the compo-
sition of distant stars andgalaxies, ofwhichwe canmeasure notmore than tiny specks
of light, the age of ancient artifacts dated by the radio carbon method. Physics also
makes definite statements about the distant future of our solar system—independent
of anyone being then around to measure it.

Thus, there is a fundamental discrepancybetweenwhat onepart of physics claims
and what the traditional interpretations of quantum mechanics allows one to claim.
This discrepancy was discussed in a paper by Bell [31], where he introduced the con-
cept of beables for objective properties.

To find objective properties, we first note that the problems created by quantum
mechanics are absent in classicalmechanics. Therefore, it seems that classical objects
exist in the sense that they have objective properties. The classical regime is usually
identified with macroscopic physics, where length and time scales are long enough
that the classical approximation of quantummechanics is accurate enough to be use-
ful. This suggests that we look at the visible parts of quantum experiments.

Most experiments done to probe the foundations of quantum physics are done
using optical devices. In quantum optics experiments, both sources and beams are
extendedmacroscopic objects describable by quantumfield theory and statisticalme-
chanics. For example, a laser beam is simply a coherent state of the quantized elec-
tromagnetic field, concentrated in a neighborhood of a line segment in space.

The sources have properties independent of measurement, and the beams have
properties independent of measurement. These are objects described by quantum
field theory. For example, the output of a laser (before or after parametric down con-
version or any other optical processing) is a laser beam, or an arrangement of highly
correlated beams. These are in a well-defined state that can be probed by experi-
ment. If this is done, they are always found to have the properties ascribed to them by
the preparation procedure. One just needs sufficient time to collect the information
needed for a quantum state tomography. The complete state is measurable in this
way, reproducibly, to any given accuracy.

Neither the state of the laser nor of the beam is changed by one or more mea-
surements at the end of the beam. Moreover, these states can be found to any de-
sired accuracy by making sufficiently long and varied measurements of the beam;
how this is done is discussed in quantum optics under the name of quantum tomog-
raphy.

Thus, these properties exist independent of any measurement—just as the moon
exists evenwhen nobody is looking at it. They can be found through diligentmeasure-
ment, just as properties of distant stars and galaxies. They behave in every qualitative
respect just like classical properties of classical objects.

Therefore, we have found a class of objective properties: the densities, intensities,
and correlation functions used to describe optical fields.
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8.5 The universe as a quantum system

In some sense, quantum mechanics was always a theory of the whole universe. For
example, the probabilistic interpretation of the wave function ψ of a single particle
asserts that there is a typically positive (though almost everywhere exceedingly tiny)
probability p(Ω) := ∫Ω dx|ψ(x)|

2 for finding the particle in an arbitrary open region Ω
of the universe, no matter how far away from where it was prepared.

In relativistic quantum field theory, the basic fields are local objects in the sense
that smeared fields ϕ(f ) and ϕ(g) commute whenever f and g have spacelike sepa-
rated support. Nevertheless, a quantum state specifies the q-expectations ⟨ϕ(f )⟩ for
arbitrary smooth test functions f and the higher-order moments (n-point correlation
functions) ⟨ϕ(f1)⟩ ⋅ ⋅ ⋅ ⟨ϕ(fn)⟩ for arbitrary smooth test functions f1, . . . , fn, hence makes
statements about uncertain values at all space-time locations, that is, everywhere in
theuniverse.Hence, relativistic quantumfield theorynecessarily describes a complete
universe. As long as gravitation is not modeled—that is, in almost all applications ex-
cept in cosmology—everything happens in a Minkowski spacetime.4

There is no known limit of validity of the principles of quantum physics. There-
fore, good foundations for quantumphysicsmust allow a consistent and deterministic
relativistic quantum description of the universe from the smallest to the largest levels
of modeling, including its classical aspects, without having to introduce any change
in the formal apparatus of quantum physics.

The foundations for quantum physics should therefore be formulated in a way
that they apply not only to small systems but to large systems such as our solar sys-
tem, and even to the largest physical system, the whole universe. Here the universe
is understood to be the smallest closed physical system containing us, hence—strictly
speaking—the only closed system containing us, and therefore the only system to
which unitary quantum physics applies without approximation. In particular, this
implies that the universe is unique.

Our solar system can be approximately treated classically, and is usually treated
in this way. But from the fundamental point of view of quantum field theory, it must
be considered as a quantum system. The state of the solar system, when modeled by
quantum fields, should completely specify what happens in any small space-time re-
gion within the solar system.

Traditional interpretations of Copenhagen flavor require that a quantum system is
measured by an external classical apparatus. They cannot apply to the quantum field
theory of our solar system, say, sincewe do not have access to an external classical ap-
paratus formeasuring this system. The astronomers doingmeasurements on the solar
system are part of the system measured—a situation outside the Copenhagen setting.

4 Except for a few passing remarks concerning gravity, we assume in this book a flat spacetime. In a
quantum field theory of gravity, we would need to replace the Galilei or Poincaré group by the diffeo-
morphism group of the spacetime manifold, which has its own foundational problems.
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Cosmology studies the state of the universe in a very coarse (and partly conjec-
tured) approximation, where even details at the level of galaxies are averaged over.
Only for properties localized in the solar system do we have a much more detailed
knowledge.

Of course, a more detailed discussion of the state of the universe should include
gravitation, and hence would touch on the difficult, unsolved problem of quantum
gravity. However, one needs at least a consistent interpretational framework in which
to discuss these questions, without having to worry about whether the concepts used
to formulate these questions mean anything in the context of a quantum systemwith-
out external observers.

Knowing all the detailed properties, or finding its exact state, is already out of
the question for a small macroscopic quantum system, such as a drop of water. Thus,
as for a drop of water, one must be content with describing the state of the universe
approximately. But, as in case of adropofwater, there is nophysical reason toquestion
the existence of the state of the whole universe, even though many of its details may
remain unknown for ever.

Agood interpretation should therefore be consistentwith assigningawell-defined
(though only superficially known) state to the whole universe, whose properties ac-
count for everything observable within the universe.

Indeed, since every property of a subsystem is also a property of the whole sys-
tem, the state of the universe must be compatible with everything we have ever em-
pirically observed in the universe. This implies that the state of the universe is highly
constrained, since knowing this state amounts to having represented all physics ac-
cessible to us by the study of its subsystems. This constitutes a very stringent test of
adequacy of a putative state of the universe.

What matters for a successful physics of the universe is that we can model (and
thenpredict) thoseproperties of theuniverse that are accessible tomeasurement at the
temporal and spatial scales of humanbeings. Since the quantities of interest in a study
of the universe as a whole are macroscopic, they have a tiny uncertainty and are well-
determined even by an approximate state. For example, one should—in principle—be
able to compute from a proposed model of the universe the values of the electromag-
netic field in regions where we canmeasure it, andwe should get excellent agreement
with the measurements if the computations could actually be done.

Nothing, however, should depend on the existence of measurement devices,
which were not available in the very far past of the universe.

8.6 A classical view of the qubit

It is commonly said that quantum mechanics originated in 1900 with Max Planck,
reached its modern form with Werner Heisenberg and Erwin Schrödinger, got its cor-
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rect interpretation with Max Born, and its modern mathematical formulation with
Paul Dirac and John von Neumann. It is very little known that much earlier—in 1852,
at a timewhen Planck, Heisenberg, Schrödinger, Born, Dirac, and von Neumannwere
not even born—George Stokes described all themodern quantumphenomena of a sin-
gle qubit, explaining them in classical terms.

Stokes’ description of a qubit is couched in the language of optics—polarized light
was the only quantum system that, at that time, was both accessible to experiment
and quantitatively understood. Stokes’ classical observables are the functions of the
components of the coherence matrix, the optical analogue of the density operator of
a qubit.

The transformation behavior of rays of completely polarized light was first de-
scribed in 1809 by Etienne-Louis Malus [177] (who coined the name “polarization”);
that of partially polarized light in 1852 by George Stokes [279]. This section gives a
modern description of the core of this work by Malus and Stokes.

We shall see that Stokes’ description of a polarized quasimonochromatic beam of
classical light behaves exactly like a modern quantum bit.

A ray (quasimonochromatic beam) of polarized light of fixed frequency is charac-
terized by a state, described equivalently by a real Stokes vector

S = (S0, S1, S2, S3)
T = (

S0
S
)

with

S0 ≥ |S| = √S21 + S22 + S23,

or by a coherence matrix, a complex positive semidefinite 2 × 2 matrix ρ. These are
related by

ρ = 1
2
(S0 + S ⋅ σ) =

1
2
(
S0 + S3 S1 − iS2
S1 + iS2 S0 − S3

) ,

where σ is the vector of Pauli matrices. Tr ρ = S0 is the intensity of the beam. p =
|S|/S0 ∈ [0, 1] is the degree of polarization. Note the slight difference to density ma-
trices, where the trace is required to be one.

A linear, nonmixing (not depolarizing) instrument (for example a polarizer or
phase rotator) is characterized by a complex 2 × 2 Jones matrix T. The instrument
transformsan ingoingbeam in the state ρ into anoutgoingbeam in the state ρ = TρT∗.
The intensity of a beamafter passing the instrument is S0 = Tr ρ

 = TrTρT∗ = Tr ρT∗T.
If the instrument is lossless, the intensities of the ingoing and the outgoing beam are
identical. This is the case if and only if the Jones matrix T is unitary.

Since det ρ = (S20 − S
2
3) − (S

2
1 + S2)

2 = S20 − S
2, the fully polarized case p = 1, that

is, S0 = |S|, is equivalent to det ρ = 0, hence holds iff the rank of ρ is 0 or 1. In this
case, the coherence matrix can be written in the form ρ = ψψ∗, with a state vector ψ
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determined up to a phase. Thus, precisely the pure states are fully polarized. In this
case, the intensity of the beam is

S0 = ⟨1⟩ = |ψ|
2 = ψ∗ψ.

A polarizer has T = ϕϕ∗, where |ϕ|2 = 1. It reduces the intensity to

S0 = ⟨T
∗T⟩ = |ϕ∗ψ|2.

This isMalus’ law.
An instrument with Jones matrix T transforms a beam in the pure state ψ into a

beam in the pure state ψ = Tψ. Passage through inhomogeneous media can be mod-
eled by means of many slices consisting of very thin instruments with Jones matrices
T(t) close to the identity. If ψ(t) denotes the pure state at time t, then ψ(t + Δt) =
T(t)ψ(t), so that for small Δt (the time needed to pass through one slice),

d
dt
ψ(t) = ψ(t + Δt) − ψ(t)

Δt
+ O(Δt) = (T(t) − 1)

Δt
ψ(t) + O(Δt).

In a continuum limit Δt → 0, we obtain the time-dependent Schrödinger equation

iℏ d
dt
ψ(t) = H(t)ψ(t),

where (note that T(t) depends on Δt)

H(t) = lim
Δt→0

iℏT(t) − 1
Δt

plays the role of a time-dependent Hamiltonian. Note that in the lossless case, T(t) is
unitary, hence H(t) is Hermitian.

A linear, mixing (depolarizing) instrument transforms ρ instead into a sum of sev-
eral terms of the form TρT∗. It is therefore described by a real 4 × 4 Mueller matrix
(Perez & Ossikovski [237]) acting on the Stokes vector. Equivalently, it is described
by a completely positive linear map on the space of 2× 2 matrices, acting on the polar-
ization matrix.

Thus,we see that apolarizedquasimonochromatic beamof classical light behaves
exactly like a modern quantum bit. Wemight say that classical optics is just the quan-
tum physics of a single qubit passing through a medium!

Indeed, the 1852 paper by Stokes [279] described all the modern quantum phe-
nomena for qubits, explained in classical terms. In particular, the following:
– Splitting fully polarized beams into two suchbeamswith different, but orthogonal

polarization corresponds to writing a wave function as superposition of preferred
basis vectors.

– Mixed states are defined (in his paragraph 9) as arising from “groups of indepen-
dent polarized streams” and give rise to partially polarized beams.
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– The coherence matrix is represented by Stokes with four real parameters, in to-
day’s terms comprising the Stokes vector.

– Stokes asserts (in his paragraph 16) the impossibility of recovering from amixture
of several distinct pure states any information about these states beyond what is
encoded in the Stokes vector (equivalently, the coherence matrix).

– The latter can be linearly decomposed in many essentially distinct ways into a
sum of pure states, but all these decompositions are optically indistinguishable,
hence have no physical meaning.

In its modern formulation via Maxwell’s equations, classical partially polarized light
(as described by Stokes) already requires the stochastic form of these equations,
featuring—just like the full quantum description—field expectations and correlation
functions; see Mandel &Wolf [178]. The coherence matrices turn into simple matrix-
valued field correlation functions.

The only difference to themodern description is that themicroscopic view ismiss-
ing. For faint light, photodetection leads to discrete detection events—even in models
with an external classical electromagnetic field; see the discussion in Section 12.4. The
trace of ρ is the intensity of the beam, and the rate of detection events is proportional to
it. After normalization to unit intensity, ρ becomes the density operator corresponding
to a single detection event (aka photon).

This is a simple instanceof the transition fromabeam (classical optics or quantum
field) description to a single particle (quantummechanical) description.

It took 75 years after Stokes until the qubit made its next appearance in the lit-
erature, in a much less comprehensive way. In 1927, Weyl [300, pp. 8–9] discusses
qubits in the guise of an ensemble (“Schwarm”) of spinning electrons. Instead of the
language of Stokes, the description uses the paradoxical language still in use today,
where the meaning of everything must be redefined to give at least the appearance of
making sense.

Brought to you by | Stockholm University Library
Authenticated

Download Date | 10/28/19 6:31 PM



9 The thermal interpretation of quantum physics
If youwish to learn from the theoretical physicist anything about themethodswhich he uses, I would
give you the following piece of advice: Don’t listen to his words, examine his achievements. For to
the discoverer in that field, the constructions of his imagination appear so necessary and so natural
that he is apt to treat them not as the creations of his thoughts but as given realities.

Albert Einstein, 1934 [79, p. 163]

In this chapter,we define anew interpretation of quantumphysics, called the thermal
interpretation. The thermal interpretation of quantum physics (including quantum
mechanics, quantum field theory, quantum statistical mechanics, and their applica-
tions) allows a consistent and deterministic relativistic quantum description of the
universe from the smallest to the largest levels of modeling, including its classical
aspects, without having to introduce any change in the formal apparatus of quantum
physics.

The goal of the thermal interpretation is to provide foundations that match all
requirements from Chapter 8. The thermal interpretation agrees with how one inter-
prets measurements in statistical thermodynamics, the macroscopic part of quantum
physics, derived via statistical mechanics. Extrapolating from the macroscopic case,
the thermal interpretation considers the functions of the state (or of the parameters
characterizing a state from a particular family of states) as the objective properties of
what really exists. Some of these are accessible to experiment—namely the expecta-
tion values of quantities that have a small uncertainty and vary sufficiently slowly in
time and space. Because of the law of large numbers, all thermodynamic variables are
in this category. By its very construction, the thermal interpretation naturallymatches
the classical, in essence, thermodynamical properties of our quantum world.

9.1 A reinterpretation of the tradition
Expectation values are all that is required to establish empirical equivalencewith orthodoxquantum
mechanics.

Hall, Deckert, and Wiseman, 2014 [114, p. 5]

Quite early in the history of modern quantum physics, Ehrenfest [76] found the
Ehrenfest equation1 (2.9), a clean and exact relation between the dynamical laws of
classicalmechanics andquantummechanicsphrased solely in termsof q-expectation.
The implications for the interpretation of quantum physics seem to have gone unno-
ticed in the literature. Instead, tradition placed an unreasonable notion of quantum
measurement at the very basis of quantum physics.

1 It is a pity that Ehrenfest did not develop this equation to the point, where it would have amounted
to an interpretation of quantum physics. This could have avoided a lot of the subsequent confusion.

https://doi.org/10.1515/9783110667387-009
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Aswe have seen in Part I, the formal part of quantum physics is mainly concerned
with q-expectations and their approximation in concrete applications. For much of
the applications of the formal part, nothing else is needed: The emergence of spectro-
scopic information in resonance situations (Section 2.4), the thermodynamics of equi-
librium and nonequilibrium processes (Sections 7.6 and 7.7), the emergence of clas-
sical properties for quantities with negligible uncertainty (Section 2.3)—all this only
involves the identification of certain q-expectations with classical observables or in-
teraction terms in classical dynamics. As the classical view of the qubit (Section 8.6),
known to Stokes long before the advent of quantummechanics, shows, even the prop-
erties of streams of particles can be fully captured by q-expectations with the classical
meaning of a beam intensity. In this light, sources and beams seem much more real
than particles. Should not then the former, not the latter, be the real players in solid
foundations?

On the level of the theory, probability and statistics play no role at all—not even
in quantum statistical mechanics, where only the basic intuition is colored by sta-
tistical ideas. Probability and statistics make their appearance only when discussing
the interface between theory and experiment, where their use is dictated by handling
noisy open systems using multiple measurements and the law of large numbers.
This is in complete agreement with how probability and statistics appear in classical
physics.

This strongly suggests that q-expectations should be regarded as objective prop-
erties of quantum systems, not only in the above case, where their interpretation is
time-honored, but in general, even in situations where there are seeming discrepan-
cies, such as in experiments involving a multitude of single, experimentally distin-
guishable events.

The thermal interpretation takes this point of viewanddeclares all q-expectations,
and whatever can be computed from them as objective properties of a quantum sys-
tem. The originally statistical machinery of q-expectations is used in an abstract
way, stripped from its original meaning, in the same way as, in functional analysis
or quantum mechanics, the notion of a vector is used for functions that have only
formal properties in common with the vectors that gave this today abstract notion
its name. This is justified by remembering that the statistical notion of uncertainty is
commonly used (and recommended by the normative agencies; see Section 3.1) also
for uncertainty of conceptual rather than statistical origin. Thus, the abstract use of
statistical mathematics for nonstatistical purposes precedes its use in the thermal
interpretation.

In the thermal interpretation, the true properties of a quantum system, approxi-
mately revealed by a measurement, are the q-expectations rather than the eigenval-
ues. Its link of the formal core to experiment is therefore not the eigenvalue link of the
traditional interpretations, but a generalization of the link between quantum physics
and thermodynamics known from statistical mechanics. This is emphasized through
the attribute “thermal” in the name of the interpretation.
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Remarkably, this change in the view of the nature of the true value of an imperfect
measurement result brings about many benefits that make it worthwhile to revise the
foundations of quantum physics on this point. The rewards are manifold; see the list
of advantages given in Section 9.4.

On the other hand, there is also a price to pay: After nearly a century of condition-
ing to the opposite convention specified in Born’s rule, this change of interpretation
seems at first sight radical and very counterintuitive. One needs to rethink everything
along the lines of the new interpretation, and make sure that the old problems are re-
ally solved and no new problems are introduced. This is the purpose of the following
chapters.

9.2 The thermal interpretation
Die richtige Frage mußte also lauten: Kannman in der Quantenmechanik eine Situation darstellen,
in der sich ein Elektron ungefähr – das heißt mit einer gewissen Ungenauigkeit – an einem gegebe-
nen Ort befindet und dabei ungefähr – das heißt wieder mit einer gewissen Ungenauigkeit – eine
vorgegebene Geschwindigkeit besitzt, und kannman diese Ungenauigkeiten so gering machen, daß
man nicht in Schwierigkeiten mit dem Experiment gerät?

Werner Heisenberg, 1972 [122, pp. 77f]

Quantum theory describes both single quantum systems and populations of quan-
tum systems in maximal generality in terms of a Lie ∗-algebra 𝕃 of quantities, and
a state, a positive definite bilinear functional on 𝕃, defining the q-expectations of
the system and their uncertainties. In the most typical case, 𝕃 is the Lie algebra of
a ∗-algebra 𝔼 of linear operators on a Euclidean space, and a state is a positive lin-
ear functional on 𝔼. The objective properties of a quantum system are given by its
q-expectations, their uncertainties, and everything computable from these.

Beyond a certain accuracy, the uncertainty in the position ofmacroscopic objects,
such as the sun, a city, a house, a tire, an apple, a cloud, or a water wavelet is a con-
ceptual uncertainty impossible to resolvebymeasurement. The thermal interpretation
asserts that all quantum uncertainty is an uncertainty of the same conceptual kind as
the uncertainty of the position of an apple.

In particular, the thermal interpretation answers Heisenberg’s question, “Can
quantum mechanics represent the fact that an electron finds itself approximately in a
given place and that it moves approximately with a given velocity, and can we make
these approximations so close that they do not cause experimental difficulties?” by
giving electrons objective but uncertain paths, making themmove along an extended
world tube rather than an infinitesimally thin classical world line.2

2 Even a pointlike quantum object is extended. Since it has a 3-component position vector q, its ex-
tension is determined by the computable position uncertainty σq = √σ2q1 + σ

2
q2 + σ

2
q3 , where q is the
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[…] auf die objektive Beschreibbarkeit der individuellenMakro-Systeme (Beschreibung des ’Realzu-
standes’) nicht verzichtet werden kann ohne dass das physikalische Weltbild gewissermassen sich
in einenNebel auflöst. Schliesslich ist die Auffassungwohl unvermeidbar, dass die Physik nach einer
Realbeschreibung des Einzel-Systems streben muss. Die Natur als Ganzes kann eben nur als indi-
viduelles (einmalig existierendes) System gedacht werden und nicht als eine ’System-Gesamtheit’.

Albert Einstein, 1953 [81, p. 40]

Theuniverse (“dieNatur als Ganzes”) is an isolated quantumsystem, the only isolated
quantum system containing us.

According to the present quantum mechanics, the probability interpretation, the interpretation
which was championed by Bohr, is the correct one. But still, Einstein did have a point. He believed
that, as he put it, the good God does not play with dice. He believed that basically physics should
be of a deterministic character.
And, I think it might turn out that ultimately Einstein will be proved right, because the present form
of quantum mechanics should not be considered as the final form. […] And I think that it is quite
likely that at some future time we may get an improved quantum mechanics in which there will be
a return to determinism and which will, therefore, justify the Einstein point of view.

Paul Dirac, 1975 [73, p. 10]

As a quantum system, the universe is exactly modeled by a unitary dynamics with a
(only crudely known) time-independent Hamiltonian. This dynamics is theoretically
exact and deterministic, given by the linear Ehrenfest equations for q-expectations.

In a statistical description of nature only expectation values or correlations are observable.
Christof Wetterich, 1997 [299, p. 2678]

Quantum fields are treated as the basic entities characterizing the universe. The q-
expectations of quantum fields (densities and currents) describe local features. Cor-
relation functions, that is, q-expectations of products of quantum fields at different
spacetime points account for objectivenonlocal properties of theworld. The concept
of a particle appears only in effective descriptions appropriate under suitable condi-
tions. In particular, objective properties of a beam consistently represent the elusive
properties of unobserved particles traditionally said to travel along the beam.

Onemust ignore or down-grade the full information in the environmental variables to seedissipation
appearing in the dynamics of the open system. […] Coarse graining can be the causal truncation of
a correlation hierarchy, the averaging of the higher modes, the “integrating out” of the fluctuation
fields, or the tracing of a density matrix (discarding phase information). […]
While the dynamics of the combined system made up of a subsystem and its environment is uni-
tarity, and its entropy remains constant in time, when certain coarse graining is introduced in the
environment, the subsystem turns into an open system, and the entropy of this open system (con-

position vector of the object. In spacetime, the uncertain positions ⟨q⟩t for a range of times t trace out
an uncertain world line. The quantum object can be visualized as moving along a fuzzy world tube,
a nested family of world tubes formed by the union of the intervals [⟨q⟩t − κσq(t), ⟨q⟩t + κσq(t)], for
reasonable κ of order one.
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9.2 The thermal interpretation | 155

structed from the reduced density matrix by tracing out the environmental variables) increases in
time. In this open system dynamics, the effect of the coarse-grained environment on the subsystem
leads to dissipation and irreversibility in its dynamics.

Esteban Calzetta and Bei-Lok Hu, 2008 [59, p. 9]

All other quantum systems are proper subsystems, defined by identifying the sub-
space of quantities relevant for describing the subsystem. If considered without their
environment (the remainder of the universe), proper subsystems are open systems,
modeled approximately by a stochastic, dissipative, and often nonlinear dynamics.
The exact dynamics of a quantum system is induced by the dynamics of the universe,
of which it is a subsystem, and becomes independent of the environment in an ap-
proximate effective description, obtained through an approximation process called
coarse-graining that tracks explicitly only the relevant quantities of the subsystem.
The stochasticity reflects the influence of high-frequency modes of the unmodeled
environment; thedissipation reflects the loss of information permanently leaving the
system through unmodeled degrees of freedom. Often, the stochasticity or the dissi-
pation may be neglected.

The state of every system is determined in the thermal interpretationby the state of
the universe through taking the appropriate partial trace. Therefore essentially every
state is mixed. Even the states that we usually regard as pure are in fact only approx-
imately pure.3 In the thermal interpretation, a mixed state is therefore not a sign of
uncertainty about the state. If there is uncertainty about a state, it just means having
an inaccurate state instead of the true one, just as in the case of uncertainty about the
precise number of atoms in a piece ofmatter. Such anuncertainty about the state is not
part of quantum theory itself but of the art of applying it to real life situations. Quan-
tum theory is about what is objectively true, and not about which knowledge human
beings have about what is objectively true.

On some limited time scale, open systems may be treated as isolated if they in-
teract sufficiently weakly with the environment, so that both stochasticity and dis-
sipation can be neglected. Then they are also modeled by a unitary dynamics, with a
possibly time-dependent Hamiltonian. For isolated quantum systems in a pure state,4

the dynamics is equivalent to the Schrödinger equation for the state vector describing
the pure state.

Operationally, a system is in an equilibrium state if its properties are consistently described by ther-
modynamic theory.

Herbert Callen, 1975 [58, p. 15]

3 For example, it is impossible to determine exactly the direction of amagnetic field in a Stern-Gerlach
experiment, but it would be needed to prepare an exact spin up particle.
4 Only tiny isolated quantum systems can be prepared in a pure state: Only for these, experimental
procedures are known, which ensure that, relative to a given description level, theory, observation,
and previous calibration experiments imply the objective properties characterizing a state.
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156 | 9 The thermal interpretation of quantum physics

The interpretation of quantum theory, that is, its identification with real life, is given
in terms of the formal theory developed by means of Callen’s criterion discussed in
Section 8.3. Thus, operationally, a quantum system is in a given state if its properties
are consistently described by the theory for this state.

The thermal interpretationdifferentiates betweenobjective properties of quantum
systems—which the systems possess according to a scientific model, independent of
whether these properties are known or even knowable, and experiments consisting
of a sequence ofmeasurements—which are the scientist’s approximateway of check-
ing such properties and validating the correspondingmodels. Experimental physics
is about how to do the measurements, and under which conditions which measure-
ments are how accurate.

Experimentors know or assume on the basis of past experience, claims of man-
ufacturers, et cetera, that certain materials or machines reliably produce states that,
to a satisfactory degree for the purpose of the experiment or application, depend only
on variables that are accounted for in our theory, and that are, to a satisfactory de-
gree, either fixed or controllable. The nominal state of a system can be checked and,
if necessary, corrected by calibration, using appropriate measurements that reveal
the parameters characterizing the state. Similarly, all claims that certain materials or
machines reliably produce certain states, and that certain instruments measure cer-
tain properties, can be checked and, if necessary, corrected by calibration. Once the
assumptions about the whole equipment are made consistent with the theory, based
on Callen’s criterion, the calibrated equipment can be used to prepare andmeasure in
agreement with the theory.

One is almost tempted to assert that the usual interpretation in terms of sharp eigenvalues is
‘wrong’, because it cannot be consistently maintained, while the interpretation in terms of expec-
tation values is ‘right’, because it can be consistently maintained.

John Klauder, 1997 [160, p. 6]

Whenperforming on a quantum systemameasurement of a quantityAwith a physical
meaning, onegets anapproximation for its value. The thermal interpretation treats the
measured value as an approximationnot of an eigenvalue ofAbut of the q-expectation
of A, the formal expectation value defined as the trace of the product of Awith a den-
sity operator describing the state of the system. The approximation error is of the or-
der of the uncertainty σA. By the Chebyshev inequality (3.4) (cf. also Theorem 10.6.1
below), this postulate is essentially implied by—and hence more cautious than—the
traditional postulate that themeasuredvalue is an eigenvalue, obtainedwith theprob-
ability given by Born’s rule.

This novel postulate of the thermal interpretation remains valid in all cases where
the traditional postulates apply since it is essentially a weaker version of the latter. It
avoids a number of problems of Born’s rule (collected in Section 14.3).
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Thus, in the thermal interpretation, there is no longer a direct relationship be-
tween the objective properties of a system measured and the eigenvalues of some of
its quantities. This constitutes the major departure from tradition—a most significant
step away from the conventional understanding, justified in Section 10.6 below. It is
the innovation that is responsible for the features that allow the thermal interpretation
to solve the measurement problem.

Wenn wir aus jenem mathematischen Schema physikalische Resultate ableiten wollen, so müssen
wir den quantentheoretischen Größen, also den Matrizen (oder ’Tensoren’ im mehrdimensionalen
Raum) Zahlen zuordnen. […] Man kann also sagen: Jeder quantentheoretischen Größe oder Matrix
läßt sich eine Zahl, die ihren ’Wert’ angibt, mit einem bestimmten wahrscheinlichen Fehler zuord-
nen; der wahrscheinliche Fehler hängt vom Koordinatensystem ab; für jede quantentheoretische
Größe gibt es je ein Koordinatensystem, in dem der wahrscheinliche Fehler für diese Größe ver-
schwindet. Ein bestimmtes Experiment kann also niemals für alle quantentheoretischen Größen
genaue Auskunft geben.

Werner Heisenberg, 1927 [117, pp. 181f]

Measurement is a complex derived process, in which objective properties of a mea-
sured systemare correlatedwith objective properties of ameasurement device, in such
a way that more or less reliable information about the measured system can be read
off from themeasurement device. Measurement results are usually inaccurate approx-
imations of what they measure. Thus, measurements reveal partial, often very noisy,
information about the measured system.

The deterministic dynamics of the complete collection of q-expectations con-
structible from quantum fields, when restricted to the set of measurable ones, gives
rise to all the stochastic features observed in practice. In particular, the probabilis-
tic, discrete nature of certain microscopic results (such as detector clicks, individual
spots on a screen, or particle tracks) arises from bistability in the effective models
describing the measurement process, in a similar way as randomness, discreteness
and hysteresis arise from deterministic classical dynamical systems (for example, a
roulette wheel or a power switch). From this and the deterministic rules, Born’s sta-
tistical interpretation follows in the limited range where it applies. (These limitations
are discussed in Section 14.3 of the Appendix.)

Within the framework of statistical quantum theory there is no such thing as a complete description
of the individual system. […]
If it should be possible to move forward to a complete description, it is likely that the laws would
represent relations amongall the conceptual elements of this descriptionwhich, per se, havenothing
to do with statistics.

Albert Einstein, 1949 [80, p. 671]

Manyq-expectations canbe approximatelymeasuredby reproducible singlemeasure-
ments of macroscopic quantities, or by sample means in a large number of observa-
tions on similarly preparedmicroscopic systems. If a large population of independent
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158 | 9 The thermal interpretation of quantum physics

but similarly prepared quantum systems is measured, the uncertainty of the individ-
ual results is reduced by the law of large numbers by a factor approximately equal
to the square root of the population size. In particular, many q-probabilities can be
approximately measured by determining the relative frequencies of corresponding
events associated with a large number of independent, similarly prepared systems.

Statistical interpretations of quantummechanics are thus recovered in the limit
of large population size.

The concept of observation is in so far arbitrary as it depends upon which objects are included in
the system to be observed. Ultimately every observation can of course be reduced to our sense per-
ceptions. The circumstance, however, that in interpreting observations use has always to be made
of theoretical notions, entails that for every particular case it is a question of convenience at what
point the concept of observation involving the quantum postulate with its inherent ‘irrationality’ is
brought in.

Niels Bohr, 1927 [39, p. 580]

For describing a quantum system, classical physics is appropriate whenever all its
relevant quantities (that is, those appearing in an effective classical dynamical de-
scription) have a tiny uncertainty only, so that the Ehrenfest equation for these quan-
tities can be approximated by the corresponding classical equation.With an appropri-
ate choice of relevant quantities,macroscopic systemsbehave classically in this sense.
Often, only some of the relevant quantities allow such a classical description, result-
ing in a mixed quantum-classical system with a hybrid quantum-classical dynamics.

The Copenhagen interpretation of quantummechanics may be regarded as the
special case, where the measurement process is described as a stochastic quantum-
classical system in the form of a piecewise deterministic process, and the selection of
classically described relevant variables defines the Heisenberg cut.

If one considers statistical mechanics as a form of statistical inference rather than as a physical
theory, it is found that the usual computational rules, starting with the determination of the par-
tition function, are an immediate consequence of the maximum-entropy principle. In the resulting
‘subjective statistical mechanics’, the usual rules are thus justified independently of any physical
argument, and in particular independently of experimental verification; whether or not the results
agree with experiment, they still represent the best estimates that could have been made on the
basis of the information available.

Edwin Jaynes, 1977 [146, Abstract]

As everywhere in science, subjective aspects enter an otherwise objective description
in different ways: (i) the delineation of a system under study from its environment
(related to the Heisenberg cut in the Copenhagen interpretation); (ii) the choice of a
description level, specifying the set of relevant quantities for modeling a system at a
desired resolution; (iii) the lack of knowledge about the exact details of a model, and
the consequent need for approximation; (iv) the quality of the approximation schemes
used; (v) the quality of the data used for the estimation of the parameters of a model.
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Knowledge interpretations of quantum mechanics, where a state says nothing
objective about the systems modeled, but is only about the subjective knowledge of
these systems, may be regarded as possible conceptual accounts for the rational man-
agement of observer knowledge about the (in these interpretations unmodeled) objec-
tive properties, represented by the q-expectations of the relevant quantities of mea-
sured quantum systems and corresponding measurement devices.

frustra fit per plura quod potest fieri per pauciora
William of Ockham, 1323 [223]

The existence of multilocal q-expectations implies that a composite system is more
than its parts. The deterministic Ehrenfest dynamics of the collection of all q-expec-
tations couples local q-expectations (that is, idealized pointer readings) to multilo-
cal q-expectations. This accounts for the nonclassical correlations observed in long-
distance entanglement.

Hidden variable interpretations of quantum mechanics introduce additional
degrees of freedom into the description of a quantum system to obtain a determinis-
tic description of quantum dynamics. Due to a well-known result by Bell [30] and its
experimental verification by Aspect [17], such a deterministic description must nec-
essarily (ignoring potential loopholes) involve nonlocal features. The thermal inter-
pretation identifies the objective nonlocal properties and the deterministic dynamics,
without having to introduce hidden variables.

Nous tenons la mécanique des quanta pour une théorie complète, dont les hypothèses fondamen-
tales physiques et mathématiques ne sont plus susceptibles de modification.

Max Born and Werner Heisenberg, 1927 [47, p. 178]

Quantum physics determines in a huge number of cases the statistics of experiments
with phenomenal success. However, it currently leaves most details about the out-
comes of experiments undetermined—each single outcome of a test for the state of a
qubit, the onsets of individual clicks in a counter, and all details of observed fluctu-
ations in continuous time experiments. Indeed most of the stuff that is actually ob-
served is left undetermined. Only their gross statistics is determined.

But only in the traditional interpretations. The thermal interpretation predicts the
outcomes of experiments individually from the state of the universe, in terms of the
quantum formalism alone without additional variables. It accounts for each single
outcome, and for all details of the fluctuations. Only our limited knowledge of the
state of the universe forces us to statistical considerations.

In view of Ockham’s razor [223, 135], that we should opt for the most economic
model explaining a phenomenon of interest, this suggests that, with the thermal inter-
pretation, quantummechanics is indeed a complete theory forwhich the fundamental
physical and mathematical hypotheses are no longer susceptible of modification—as
anticipated by Born and Heisenberg many years ago.
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160 | 9 The thermal interpretation of quantum physics

9.3 The interpretation of quantum-classical systems

A consistent interpretation of quantum-classical systems must be in terms of con-
cepts that have identical form in classical and inquantummechanics; otherwise, there
are inevitable conflicts. This is impossible in the traditional statistical interpretation;
there are several theorems in the literature documenting this [49, 258]. The reason is
that q-expectations in the quantum-classical dynamics cannot be interpreted as the
result of averaging overmany realizations; theymust be properties of the single quan-
tum system, for which the dynamics is supposed to hold.

New in quantum-classical systems—compared to pure quantum dynamics—is
that in the Heisenberg picture, the Heisenberg state appears explicitly in the differ-
ential equation for the dynamics—though, as it should be in any good Heisenberg
picture, it does not take part in the dynamics. This makes an important difference in
the interpretation of the theory. In contrast to the pure quantum case, there is now
a difference between averaging results of two experiments ρ1, ρ2 and the results of a
single experiment ρ given by (ρ1 + ρ2)/2. That, in ordinary quantum theory, the two
are indistinguishable in their statistical properties is a coincidental consequence of
the linearity of the Schrödinger equation, and the resulting state independence of the
Heisenberg equation; it does no longer hold in effective quantum theories, where non-
linearities appear due to a reduced description. Since quantum-classical systems (at
least as they appear in the literature) also are reduced descriptions, there is nothing
surprising in that the same phenomenon occurs.

Because the dynamics depends on the Heisenberg state, calculating results by
splitting a density at time t = 0 into a mixture of pure states no longer makes sense.
One gets different evolutions of the operators in different pure states, and there is no
reason why their combination should, at the end, give the correct dynamics of the
original density. (And indeed, this will usually fail.) This splitting is already artificial
in pure quantum mechanics since there is no natural way to tell of which pure states
a mixed state is composed of. But there the splitting happened to be valid and use-
ful as a calculational tool since the dynamics in the Heisenberg picture is state inde-
pendent. In the quantum-classical case, not even this is possible, so the quantum-
classical equations have no sensible interpretation in terms of mixing pure cases into
an ensemble.

Thus, the quantum-classical setting cannot be consistently interpreted in the tra-
ditional interpretations, where q-expectations have only a statistical meaning.

On theother hand, the thermal interpretation can cope successfullywith this chal-
lenge sinceq-expectations are irreducible objects describinga single quantumsystem,
not stochastic entities that make sense only under repetition. Therefore, in the ther-
mal interpretation, the quantum-classical setting is very natural. It gives meaning to
a theory that contains the classical and the quantum case as two special cases of the
same conceptual framework. In this framework, one can therefore discuss things con-
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sistently that lead to puzzles if interpreted either on a pure classical or on a pure quan-
tum basis, or in some ill-defined in-between limbo.

It is—in principle—conceivable (though not desirable from the point of view
of simplicity) that the most fundamental description of Nature is truly quantum-
classical and not purely quantum. In the absence of an interpretation with a consis-
tent quantum-classical setting, this would have been unacceptable, but apart from
elegance, there are no longer fundamental reasons that would forbid it. In particular,
this could be a possible resolution of the problem of quantum gravity.

9.4 Advantages of the thermal interpretation
If the relations are known to us, what does it matter if we think it convenient to replace one image
by another?

Henri Poincaré, 1902 [241, p. 161]

The conventions embodied in the thermal interpretation have, compared to tradition,
several direct or indirect advantages.

The thermal interpretation
– allows a consistent quantum description of the universe and its subsystems, from

the smallest to the largest levels of modeling, including its classical aspects;
– acknowledges that there is only one world;
– has no split between classical and quantummechanics—the former emerges nat-

urally as the macroscopic limit of the latter;
– is about both real systems and idealized systems, at every level of idealization;
– applies both to single quantum objects (like a quantum dot, a neutron star, or the

universe) and to statistical populations;
– allows one to make definite statements about each single quantum system, no

matter how large or small it is;
– is by design compatible with the classical ontology of ordinary thermodynamics;
– satisfies the principles of locality and Poincaré invariance, as required for rela-

tivistic quantum field theory;
– is compatible with relativistic causality for extended objects;
– is description-dependent but observer-independent, hence free from unspecified

subjective elements;
– correctly reflects the actual practice of quantum physics, especially regarding its

macroscopic implications;
– provides foundations that are easily stated and motivated since they are essen-

tially the foundations used everywhere for uncertainty quantification;
– uses no concepts beyond what is taught in every quantum physics course;
– requires at the levels of the postulates apart from definitions no technical mathe-

matics—no spectral theorem, no notion of eigenvalue, no probability theory;
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162 | 9 The thermal interpretation of quantum physics

– gives a natural, realistic meaning to the standard formalism of quantummechan-
ics and quantum field theory in a single world;

– preserves the agreement of quantum theorywith the experimental record,without
introducing changes in the kinematics or the dynamics of the established theory;

– gives a fair account of the interpretational differences between quantummechan-
ics and quantum field theory;

– involves nophilosophically problematic steps—it eliminates from the foundations
the philosophically problematic notions of probability and measurement;

– paints a deterministic picture of quantum physics in which God does not play
dice—it only seems so to us mortals because of our limited resolution capacity,
and since we have access to a limited part of the universe only;

– explains how the unmodeled environment influences the results enough to cause
all randomness in quantum physics;

– explains the emergence of probabilities from the linear, deterministic dynamics
of quantum states or quantum observables;

– derives Born’s rule for scattering and in the limit of ideal measurements;5

– is independent of the measurement problem—which becomes a precise problem
in statistical mechanics rather than a fuzzy and problematic notion in the foun-
dations;

– solves the measurement problem, makes quantummechanics much less mysteri-
ous, and makes it much less different from classical mechanics;

– gives at any time simultaneously idealized but uncertain values to position and
momentum of distinguishable particles, eliminating the spooky nature of the tra-
ditional quantum ontologies;

– explains the peculiar features of the Copenhagen interpretation (lacking realism
betweenmeasurements) and the statistical interpretation (lacking realism for the
single case) in the microscopic world, where the latter apply;

– explains the collapse as emerging in the coarse-grained approximation of non-
isolated subsystems;

– explains what physicists actually do rather than what they say;
– explains what people actually use in the applications (as contrasted to work on

the foundations themselves), even when they pay lipservice to another interpre-
tation.

Thus, the thermal interpretation satisfactorily resolves the traditional stumbling
blocks for a clear description of the relation between the quantum formalism and
experimental reality. As a consequence, the thermal interpretation leads to a gain in
clarity of thought. This results in saving efforts otherwise spent in the contemplation

5 But in general, only part of Born’s rule holds exactly: Whenever a quantity A with zero uncertainty
is measured exactly, its value is an eigenvalue of A.
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of aspects arising in traditional interpretations, which from the point of view of the
thermal interpretation appear as meaningless or irrelevant side problems.

The following list points to the quantum phenomena treated in this book on the
basis of the thermal interpretation, some extensively, others only shortly.
– black body radiation (Section 12.3);
– photodetection (Section 12.1);
– the Compton effect (Section 13.2);
– particle tracks (Section 12.2);
– particle impinging on a screen (Section 13.1);
– particle decay (Section 13.2);
– the qubit (Sections 8.6 and 10.3–10.4);
– motion of heavy particles (Section 2.3);
– spectroscopy (Section 2.4);
– chemical and nuclear reactions (Section 13.2);
– quantum chemistry in the Born–Oppenheimer approximation (Section 7.9);
– the Stern–Gerlach experiment (Sections 13.3–13.4);
– tests for Bell inequalities (Section 13.6).

9.5 Open problems

In terms of thermal interpretation, themeasurement problem turns from a philosoph-
ical riddle into a scientific problem in the domain of quantum statistical mechanics,
namely how the quantum dynamics correlates macroscopic readings from an instru-
mentwithproperties of the state of ameasuredmicroscopic system. Thedevelopments
in this book show that the thermal interpretation resolves the measurement problem
at least in a qualitative way. However, to rightly claim a quantitative solution, a num-
ber of detailed questions need to be investigated. Unlike traditional interpretations,
the thermal interpretation is an interpretation of quantum physics that is, in princi-
ple, refutable by theoretical arguments.

This section presents a number of open problems:
– Themeasurement principle (MP) (fromSection 11.1) demands that any instrument

for measuring a quantity A has an uncertainty Δa ≥ σA. How to prove this from
the statistical mechanics of measurement models is an open problem.

– The derivation of a piecewise deterministic stochastic process (PDP) by Breuer
& Petruccione [54] (see Section 11.7) suggests that, under the standard assump-
tions that go into the traditional derivations in classical statistical mechanics,
collapse in a single observed system—in the modern POVM version (see Sec-
tion 11.5) of the corresponding von Neumann postulate for quantum dynamics
– is generally derivable from the unitary dynamics of a bigger system. It would
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164 | 9 The thermal interpretation of quantum physics

be desirable to have for this a direct argument, not dependent on a statistical
approach.6

– It should be possible to show in quantitative detail how position loses its param-
eter status and becomes uncertain when going from the relativistic quantum field
description of a beam to a corresponding quantum mechanical description of a
sequence of particles moving along the beam.

– It should be possible to explain from the dynamics of the universe the sta-
tistical features of scattering processes and the temporal instability of unob-
served superpositions of pure states, as caused by the neglect of the environ-
ment.

– The thermal interpretation might have applications for understanding, control-
ling, and ultimately designing detailed dissipation properties of microscopic
systems.

6 Added in proof: A general, direct and rigorous argument for the POVM version of Born’s rule will be
given in a forthcoming paper ”A derivation of Born’s rule” by the author. Born’s rule itself cannot be
derived, because of its limitations spelled out in Section 14.3.
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10 Measurement
Die vorher scheinbar unlösbaren Paradoxien der Quantentheorie beruhten alle darauf, daß man
diese mit jeder Beobachtung notwendig verbundene Störung vernachlässigt hatte.

Werner Heisenberg, 1929 [119, p. 495]

In this chapter, we discuss measurement from a fundamental point of view, where
all physical systems are treated as subsystems of the universe. All measurement out-
comes are functions of q-expectations of the detector, hence are deterministically pre-
dicted by the state of the universe, though not only by the state of the subsystem con-
sisting of the measured object and the detector.

We consider in detail how the thermal interpretation explains the emergence of
binary responses of a measurement device when coupled with the simplest quantum
object, a qubit, with probabilities given by the diagonal entries of the reduced density
matrix of the prepared qubit.

10.1 Objective properties and their measurement

The objective properties of a quantum system are given by its q-expectations, their
uncertainties, and everything computable from these. A statement is a {true, false}-
valued property. This gives a clear formal meaning to the notion of existence, an on-
tology. In the thermal interpretation, something about a quantum system is said to
exist, to be real, and to be objective—three ways of expressing the same—if and only
if it can be expressed solely in terms of objective properties of the system as just de-
fined. This formal ontology is definedon the level of themodel specifying the quantum
system. It gives a clear formal meaning to the notion of existence. Whether something
that exists in thismodel sense also exists inNature depends on how faithful themodel
is to the corresponding aspect of Nature.

For a quantum system, described by an algebra 𝔼 of linear operators on a Eu-
clidean space, the q-expectations are given by a positive linear functional on 𝔼, ex-
pressed in terms of a Hermitian density operator ρ of trace 1 as

⟨A⟩ = Tr ρA.

We refer to both the positive linear functional and the density operator as the state
of the system. As observed in 1927 by von Neumann [216, p. 255]—who was the first
to base quantum mechanics upon expectations rather than probabilities—the speci-
fication of all q-expectations uniquely determines the density operator ρ. Thus, every
function of ρ can be rewritten as a function of q-expectations, and vice versa. There-
fore, the notion of objective properties as functions of the state is unambiguously de-
fined.

https://doi.org/10.1515/9783110667387-010
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166 | 10 Measurement

The state depends on how it is viewed. In this chapter, we only consider the time
dependence in the Schrödinger picture,1 so that

⟨A⟩t = Tr ρtA. (10.1)

A subsystem of a system is specified by a choice declaring some of the quantities
of the system to be the distinguished quantities of the subsystem, including a choice
for the Hamiltonian of the subsystem. The dynamics of the subsystem is generally not
closed, hence not given by the Ehrenfest equation (2.14). Instead, one generally uses
coarse-graining to obtain an approximate closed (deterministic or stochastic) dynam-
ical description.

The state of a subsystem is completely specified by the state of any larger system it
is contained in, by restricting the positive linear functional to the distinguished quan-
tities of the subsystem. This is in contrast to the situation in traditional, state vector-
based interpretations, and resolves the problems for the latter discussed in Chapter 15
of the Appendix.

In the most general form of a subsystem, no tensor product structure is assumed,
unlike in traditional interpretations. However, suppose that the latter is present, so
that ℍ = ℍS ⊗ ℍE, and the quantities of the subsystem are the linear operators of
ℍS ⊗ 1. (This is discussed in more detail in Section 10.2.) Then, without changing any
of the predictions for the subsystem, the Hilbert space of the subsystemmay be taken
to be the smaller Hilbert space ℍS, and the quantities of the subsystem are the lin-
ear operators ofℍS. Then the density operator of the subsystem is the reduced state
obtained as the partial trace over the environment Hilbert spaceℍE .

Only a small set of objective properties are practically (approximately) observable.
Whenever we are able to compute something from raw observations according to the
rules of some meaningful protocol, and it adequately agrees with something deriv-
able from quantum physics, we call the result of that computation a measurement
of the latter. This correctly describes the practice of measurement in its most general
form.

(M) We say that a property P of a system S (encoded in its state) has beenmea-
sured by another system, the detector D, if at the time of completion of the mea-
surement and a short time thereafter (long enough that the information can be read
by an observer) the detector state carries enough information about the state of the
measured system S at the time when the measurement process begins to deduce with
sufficient reliability the validity of property P at that time.

To give a precise formal expression for rule (M) in the context of the thermal in-
terpretation, we have to define the property P as the validity or invalidity of a specific

1 Note that the density operator, viewed as a time-dependent object, is picture-dependent, but
with the corresponding time-dependence of the linear operator A as discussed in Section 2.2, the
q-expectations are picture-independent.
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mathematical statement P(ρS) about the state ρS of the system, and the information
to be read as another specific mathematical statement Q(ρD) about the state ρD of the
detector. Thenwe have to check (theoretically or experimentally) that the dynamics of
the joint system, composed of system, detector, and the relevant part of the environ-
ment implies that—with high confidence and an appropriate accuracy

Q(ρD(t)) ≈ P(ρS(ti)) for tf ≤ t ≤ tf + Δt. (10.2)

Here ti and tf denote the initial and final time of the duration of the measurement
process, and Δt is the time needed to read the result.

For example, to have sufficient reasons to call the observation of a pointer position
or a detector click an observation of a physical property of the measured system, one
must show that (10.2) holds for the property P(ρS) claimed to be measured and some
encoding Q(ρB) of the pointer position or detector click.

Establishing such a relation (10.2), based on experimental evidence, requires
knowing already how system properties are experimentally defined, through prepa-
ration or measurement. This gives the definition of measurement the appearance of a
self-referential cycle. But this self-reference is of a similar nature as the one in Callen’s
criterion discussed in Section 8.3, and is resolved once preparation andmeasurement
are found to be experimentally consistent. This can be achieved in an iterative process
typical for self-consistent specifications everywhere in physics.

On the other hand, deducing (10.2) theoretically is a difficult task of statistical
mechanics, since the instrument is amacroscopic body that, on the fundamental level
necessary for a foundation, can be treated only in terms of statistical mechanics. The
investigation of this in Sections 11.6 and 11.7 will show essential differences between
the traditional interpretations and the thermal interpretation.

10.2 Physical systems and their states

From a fundamental point of view, each physical system is a subsystem of the whole
universe, the only truly isolated physical system containing the solar system. By the
unitary dynamics of the universe, we have in the standard Schrödinger picture at each
time t a universal density operator

ρ(t) = e−itH/ℏρ(0)eitH/ℏ,

in terms of which the q-expectations (10.1) at time t are defined.
A physical system is a subsystem of the universe. It is selected by distinguishing

the elements of a vector space 𝔼 of quantities (linear operators on the Hilbert space
of the universe) as being the quantities relevant to the subsystem, and restricting the
q-expectation mapping of the universe to 𝔼.

Brought to you by | Stockholm University Library
Authenticated

Download Date | 10/28/19 6:31 PM



168 | 10 Measurement

In many cases, the physical system S is defined by a decomposition of the Hilbert
spaceℍ of the universe into a tensor productℍ = ℍS ⊗ℍE of a systemHilbert space
ℍS and an environment Hilbert spaceℍE for the remaining part of the universe. We
call such physical systems standard.

Each standard physical system S has a corresponding reduced density operator,
given in the standard Schrödinger picture by

ρS(t) := TrE ρ(t),

where TrE denotes the partial trace over the environment. Thus, the reduced density
operator ρS(t) is the state of the physical system at time t. These are the only states the
thermal interpretation is concerned with at all—because these are the states contain-
ing precisely the information about the q-expectations of operators of the universe
attached to the system S. Indeed, the reduced density operator is defined such that for
linear operators A onℍS, describing system properties, the q-expectations are given
by

⟨A⟩t := ⟨A ⊗ 1⟩t = Tr ρ(t)(A ⊗ 1) = Tr ρ
S(t)A,

where 1 denotes the identity operator onℍE . Each ρS(t) and ρS(x) is a Hermitian pos-
itive semidefinite linear operator onℍS with trace 1.

Given any Hermitian positive semidefinite linear operator ρS onℍS with trace 1, it
may be possible, by utilizing the laws of Nature and the control facilities these impart
on humans ormachines, to ensure that at some time tprep (or some spacetime position
xprep),ρS(tprep), that is,ρS(xprep)approximatesρS sufficientlywell that predictionswith
ρS in place of ρS(tprep) or ρS(xprep)match experimental checks. In this case, we say that
at time tprep (or spacetime position xprep), the system S isprepared in the state ρS. How
to do this is part of the experimental art of preparation.

IfρS has rank 1, thenρS = ψψ∗ for some statevectorψofnormone (determinedby
ρS up to a phase). In this case, we say that the system is prepared in the pure state ψ.
Physicists can prepare a system in a pure state only when this system has very few
degrees of freedom.

10.3 A single qubit as a subsystem of the universe

We consider a single qubit as a subsystem of the universe. The Hilbert space of the
universe can be decomposed into a tensor productℍ = ℍS ⊗ℍE of a 2-dimensional
systemHilbert spaceℍS, and an environment Hilbert spaceℍE for the remaining part
of the universe. We suppose that the qubit is prepared in a state defined by a general
reduced density matrix ρS with components ρSjk = ⟨j|ρ

S|k⟩. Then ρS is given by

ρS =∑
j,k
ρSjk |j⟩⟨k|.
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10.3 A single qubit as a subsystem of the universe | 169

Since ρS is Hermitian positive semidefinite with trace 1,

ρS = (p α∗

α 1 − p
) (10.3)

for some real number p ∈ [0, 1] and some complex number α with

|α| ≤ √p(1 − p). (10.4)

The true value of the up operatorA = ( 1 0
0 0 ) is, according to the thermal interpretation,

A = ⟨A⟩ = TrS A = p,

with an uncertainty of

σA = √⟨A2⟩ − A
2
= √p(1 − p).

In particular, the true value has no intrinsic uncertainty iff p = 0 or p = 1.
In the following, we analyze in which way p is reflected in an arbitrary environ-

mental q-expectation. For simplicity, we assume that at preparation time t = 0, the
density operator of theuniverse in the Schrödinger picture has the tensor product form

ρ0 = ρ
S ⊗ ρE =∑

j,k
ρSjk |j⟩⟨k| ⊗ ρ

E . (10.5)

(This assumption could be relaxed, but not without going throughmuchmore techni-
cal computations.) The dynamics of the universe is governed by a unitary matrix U(t)
turning ρ0 into

ρ(t) = U(t)ρ0U(t)
∗.

Wemay decompose U(t) uniquely as

U(t) =∑
ℓ,k
|ℓ⟩⟨k| ⊗ Uℓk(t)

with suitable Uℓk(t) ∈ LinℍE .
Let XE ∈ LinℍE be a Hermitian quantity located in the environment, so that

X := 1 ⊗ XE ∈ Linℍ

is a quantity of the universe. We want to calculate its q-expectation

Xt := ⟨X⟩t = Tr ρ(t)X = TrU(t)ρ0U(t)
∗X = Tr ρ0U(t)

∗XU(t) = Tr ρ0X(t),
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170 | 10 Measurement

where

X(t) = U(t)∗XU(t) = U(t)∗(1 ⊗ XE)U(t)

=∑
ℓ,j
|j⟩⟨ℓ| ⊗ Uℓj(t)

∗(1 ⊗ XE) ∑
ℓ ,k
|ℓ⟩⟨k| ⊗ Uℓk(t)

= ∑
ℓ,ℓ ,j,k
|j⟩⟨ℓ|ℓ⟩⟨k| ⊗ Uℓj(t)

∗XEUℓk(t)

= ∑
ℓ,j,k
|j⟩⟨k| ⊗ Uℓj(t)

∗XEUℓk(t).

Using (10.5), we find that

Xt = ⟨X⟩t = Tr ρ0X(t)

= Tr∑
j ,k

ρSjk |j
⟩⟨k| ⊗ ρE ∑

ℓ,j,k
|j⟩⟨k| ⊗ Uℓj(t)

∗XEUℓk(t)

= ∑
ℓ,j,k

ρSkj|k⟩⟨j| TrE ρEUℓj(t)
∗XEUℓk(t).

If we define XS(t) ∈ LinℍS by

XS(t)jk := TrE ρEUℓj(t)
∗XEUℓk(t), (10.6)

we arrive at

Xt = ∑
ℓ,j,k

ρSkj|k⟩⟨j|X
S
jk(t) = TrS ρSXS(t), (10.7)

and by (10.3),

Xt = pX
S
11(t) + (1 − p)X

S
22(t) + 2 Re αX

S
12(t). (10.8)

Note that in (10.7), Xt depends linearly on the system density ρS. In particular, when
ρS = ψψ∗ is a pure state then Xt depends nonlinearly on ψ. As a consequence it is
in general impossible to deduce from the predicted results for two initial pure states
those for a superposition; additional mixed terms involving both initial pure state ap-
pear and introduce new information. Because of these mixed terms, superposition ar-
guments break down completely – there is no superposition of measurement results.

10.4 The emergence of Born’s rule

We now consider multiple preparations in the qubit state represented by ρS, but in
multiple contexts. We label each such preparation with a label ω from some sample
space Ω. Since the split into system and environment is different in each preparation,
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10.4 The emergence of Born’s rule | 171

the state ρE, representing the state of the environment, depends on the preparation
labelω, so that ρE = ρE(ω). Since XE was assumed to be Hermitian, (10.6) implies that
the matrix XS(t) is also Hermitian and, being dependent on ρE(ω), depends on ω. We
write

XS(t) = (x̂t(ω) ẑt(ω)∗

ẑt(ω) ŷt(ω)
)

for the realization obtained in the preparation labeled byω ∈ Ω. Then we may rewrite
(10.8) as

Xt = px̂t(ω) + (1 − p)ŷt(ω) + 2 Re αẑt(ω). (10.9)

The ω-dependence is actually a dependence on details of the environment that are
uncontrollable in practice. Hence, it effectively turns XS(t) into a time-dependent ran-
dom matrix and x̂t, ŷt and ẑt into time-dependent random variables, of which a new
realization is obtained for each preparation of the qubit in the state represented by ρS.
Their distribution, however, depends on more general properties of the environment
and is, in principle, amenable to an analysis by the traditional techniques of statistical
mechanics. Let us write

Xeff(t) = (
xefft zefft

∗

zefft yefft
)

for the effectivemean ofXS(t), averaged over all preparationsω ∈ Ω.As a consequence
of (10.8), Xt itself behaves like a random variable, with mean

Xeff
t = TrS ρ

SXeff(t) = ⟨Xeff(t)⟩S .

Thus, we may view every environmental q-expectation Xt as a random observation
of a corresponding effective q-expectation of a quantity Xeff(t) defined on the qubit.
Whereas this “randomness” is deterministic, given the complete state of the universe,
it looks random due to the uncontrollable influence of the environment. Usually,
Xeff(t) is just noise, and Xeff

t is essentially zero, giving no information about the qubit.
However, for specially chosen X, namely for those where X is physically related to the
qubit in a significant way, Xeff

t is nonzero and gives nontrivial statistical information
about the qubit measured—it constitutes a useful measurement for a qubit property
in the sense of criterion (M) from Section 10.1.

Inpractice,whichquantity of thequbit is observed canbe foundout by techniques
known from quantum tomography. If X depends on a parameter vector θ, then Xeff(t)
also depends on θ, andwe can find out the precise θ-dependence by these techniques.
Therefore, we have an effective way of calibrating our measurement device. In partic-
ular, whenever we can find a value for θ, for which Xeff(t) = A, we get a statistical
measurement of the true value p of the up operator A.
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172 | 10 Measurement

The precise statistical properties of XS(t) can be found out by careful calibration.
They can also be predicted by a theoretical analysis of the formula defining XS(t), us-
ing the standard techniques of statistical mechanics, though this may involve consid-
erable work. Here we give an outline of how such a theoretical analysis may proceed
in principle, leaving details to future investigations of particular situations amenable
to a more detailed analysis.

We consider an environmental operator XE that leads to a pointer variable Xt,
which moves2 in a macroscopic time t > 0, a macroscopic distance to the left (in mi-
croscopic units, large negative) when p = 0, and to the right (large positive) when
p = 1. In both cases, α = 0 by (10.4). Hence, by (10.9), Xt = x̂t(ω) in the first case, and
Xt = ŷt(ω) in the second case. Therefore,

x̂t(ω) ≫ 0 ≫ ŷt(ω). (10.10)

We want to find idealized conditions, under which a measurement protocol produces
measurements that follow Born’s rule exactly.

In thermodynamics, we get idealized relations in the thermodynamic limit of
infinite size, which are still applicable with good accuracy to systems of small but
macroscopic size. Similarly, in kinetic theory, the scattering matrix, defined through
an asymptotic limit of times t → ±∞ (and the associated infinite separability of
clusters) is used to define with good accuracy the collision rates and products of mi-
croscopic scattering events (where distances are small but large compared to atomic
distances and times are short but large compared to the time needed to travel an
atomic distance) figuring in the derivation of the kinetic equations.

This justifies in the present situation, too, that we idealize macroscopic distances
and times as infinite, and therefore assume in place of (10.10) the exact but idealized
limit

x̂t(ω)→∞, ŷt(ω)→ −∞ for t →∞. (10.11)

The desired idealized conditions for the emergence of Born’s rule are now given by the
following theorem:

Theorem 10.4.1. Let x̂t , ŷt , ẑt be time-dependent random variables such that (10.11)
holds and

v̂t(ω) :=
ẑt(ω)
x̂t(ω)
→ 0 for t →∞. (10.12)

2 This is the simplest situation amenable to a rigorous analysis. It does not suffice for the analysis of
a Stern–Gerlach experiment, say, where instead one of two pointer variables at a fixed distance will
show a macroscopic response. This is treated in a less rigorous fashion in Section 13.4.
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10.4 The emergence of Born’s rule | 173

If the random variable

u := lim
t→∞

ût , (10.13)

where

ût(ω) :=
x̂t(ω)

x̂t(ω) − ŷt(ω)
,

exists almost everywhere and is uniformly distributed in [0, 1] then

Pr(Xt →∞) = p, Pr(Xt → −∞) = 1 − p. (10.14)

Proof. Indeed, under the stated conditions, ŷt/x̂t = 1 − 1/ût . Hence, (10.9) implies that

Xt = x̂t(p + (1 − p)ŷt/x̂t + 2 Re αẑt/x̂t) = x̂t(1 − (1 − p)/ût + 2 Re αv̂t).

Since u ≥ 0 under our assumptions, we find in the limit that

Pr(Xt →∞) = Pr(1 − (1 − p)/u > 0) = Pr(u > 1 − p) = p,
Pr(Xt → −∞) = Pr(1 − (1 − p)/u < 0) = Pr(u < 1 − p) = 1 − p.

Therefore, in each particular experiment ω, the q-expectation Xt = Xt(ω) of the
pointer variable will end upwith a definite sign. Real detectors for microscopic events
usually magnify tiny initial displacements in a single scattering event (a single es-
caping electron in a photomultiplier3 or a single chemical reaction on a photographic
plate) by special processes, thus making the infinite time limit irrelevant. The (here
unmodeled) magnification process will lead to a unique limiting X of the same sign
as Xt but macroscopically stabilized. The final measurement result X̂(ω), fully deter-
mined by ρE(ω), will in each case be close to one of two opposite values ±x,

X̂(ω) ≈ ±x. (10.15)

Assumption (10.12) has the nature of a decoherence condition (see Section 10.5) and
is likely to be satisfied under quite general conditions, using a random phase approx-
imation argument.

Real detectors have various inefficiencies thatmay cause deviations from the ideal
probabilistic law expressed by Born’s rule. For approximately satisfying Born’s rule,

3 The observable photocurrent is a property of the detector. This outcome is not quantized but a
continuous burst, for each single observation of a detection event. The derivation of macroscopic
electrodynamics from QED shows (cf. Section 7.4) that the measured currents are q-expectations of
smeared field operators. Only the details of the smearing depend on the actual device. These are the
q-expectations relevant for the thermal interpretation.
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it suffices that the assumptions are satisfied only approximately. The condition that u
exists and is approximately uniformly distributed in [0, 1] is the essential condition,
which requires a thorough analysis and must be verified in each concrete setting. It
is likely that in the settings treated by Allahverdyan, Balian & Nieuwenhuizen [7]
and Breuer & Petruccione [54], discussed in Chapter 11, an analysis similar to that
given above can be abstracted from their treatment.

10.5 Relations to decoherence
Of course, no unitary treatment of the time dependence can explain why only one of these dynami-
cally independent components is experienced.

Erich Joos and Dieter Zeh, 1985 [150, p. 242]

According to the thermal interpretation, the state of theuniverse determines determin-
istically the outcome of each measurement, but the dependence is too sensitive to be
resolved by any forseeable means. As a result, repeated experiments show a random
behavior, governed under certain conditions by Born’s rule.

In contrast, according to the traditional interpretations, the outcomes of experi-
ments are identified with eigenvalues, which must be randomly selected according to
Born’s rule. This randomness is usually stated to be irreducible, i.e., not further an-
alyzable. However, this is in apparent conflict with the Schrödinger equation which
has no special dynamics for measurement devices. The most successful approach to
relating in the traditional interpretations Born’s rule to the Schrödinger equation is
based on decoherence.

The fact that in many cases, the reduced density operator becomes, after an ex-
tremely short decoherence time, very close to diagonal in a suitable, environment-
induced basis is called decoherence (Joos & Zeh [150], Zurek [318], Schlosshauer
[264, 265]). In the case of measuring the up quantity of a qubit in an environment, de-
coherence gives as reduced density operator a diagonalmatrixwhose diagonal entries
are the probabilities for the two outcomes up or down. The diagonalization and the re-
sulting q-probabilities can be deduced from the core of quantum mechanics alone.
However, that precisely one of the two cases actually happens cannot be deduced
without using, in addition, the eigenvalue link—rule (BR5) from Section 1.1.

To see the relationship of our development with decoherence, let us review what
we obtained in the previous section. In each experimentω, the density operator ρE(ω)
will be different, and the sign of the q-expectation (10.15) depends chaotically on the
details, hence appears random.

Instead ofmodeling the individual case, decoherenceworkswithin the traditional
interpretation, which describes everything only in statistical terms. In particular, en-
sembles of many identically prepared systems are considered, and the density op-
erator ρE used in the decoherence approach is assumed to be an exact equilibrium
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state, which is the case only in the mean over many experiments. Now the von Neu-
mann equation governing the dynamics of the universe is linear in ρ and hence in
ρE . The resulting reduced dynamics is in the analysis of decoherence evaluated in the
Schrödinger picture and approximated by a Lindblad equation, also linear in ρE . By
linearity, the resulting dynamics describes precisely the behavior of the mean of func-
tions of the pointer variable in all these experiments.

Effectively, (10.9) is averaged over the ensemble, and (10.12) is replaced by the
well-known effect of decoherence, the decay of the off-diagonal entries of the reduced
density operator. As a result, the decoherence analysis reproduces the average results
obtained from the analysis in terms of the thermal interpretation.

Thus decoherence tells roughly the same the same story as the thermal interpre-
tation, but only in statistical terms, whereas the thermal interpretation refines this to
a different, more detailed story for each single case. This is possible since in the ther-
mal interpretation, outcomes are defined as macroscopic q-expectations approximat-
ing the microscopic quantities to be measured, and q-expectations are always single-
valued. This makes a big difference in the interpretation of everything!

Note that decoherence cannot resolve the statistical picture into single events.
This is because according to all traditional interpretations4 of quantum mechanics,
single events (in a singleworld) have no theoretical representation in the generally ac-
cepted quantum formalism. Only the thermal interpretation represents single events
within the generally accepted quantum formalism, without having to assume it in the
form of rule (BR5).

10.6 Measurement errors
Some hypotheses are dangerous, first and foremost those which are tacit and unconscious. And
since we make them without knowing them, we cannot get rid of them. Here again, there is a ser-
vice that mathematical physics may render us. By the precision which is its characteristic, we are
compelled to formulate all the hypotheses that we would unhesitatingly make without its aid.

Henri Poincaré, 1902 [241, p. 151]

We now give a detailed analysis of the concept of measurement error. This leads to a
justification and comparison of the convention used to define measurement accuracy
in the thermal interpretationwith the traditional convention. It is followed by an anal-
ysis of the double-slit experiment, which exemplifies the crucial differences of these
conventions.

Measurement errors are ubiquitous in physical practice; their definition requires,
however, some care. A single measurement produces a number, the measurement

4 This even holds for Bohmian mechanics. Here single events have a theoretical representation, but
this representation is external to the quantum formalism, givenby the additionally postulatedposition
variables.
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result. The splitting of themeasurement result into the sum of an intended result (the
true value) and a measurement error (the deviation from it) depends on what one
declares to be the true value. Thus, what can be said about measurement errors de-
pends on what one regards as the true value of something measured. This true value
is a theoretical construct, an idealization arrived at by convention.

Since measurements are only actual results, never the hypothesized true values,
there is no way to determine experimentally which convention is the right one. Both
the quantum formalism and the experimental record are independent of what one
declares to be the true value of a measurement. Different conventions only define dif-
ferent ways of bookkeeping, that is, different ways of splitting the same actual mea-
surement results into a sum of true values and errors, in the communication about
quantum predictions and experiments. Nothing in the bookkeeping changes the pre-
dictions and the level of their agreement with experiment.

Thus, the convention specifying what to consider as true values is entirely a mat-
ter of choice, an interpretation. The convention one chooses determines what one
ends up with, and each interpretation must be judged in terms of its implications for
convenience and accuracy. Like conventions about defining measurement units [57],
interpretations can be adjusted to improvements in theoretical and experimental un-
derstanding, to better serve the scientific community.

Born’s statistical interpretation of quantum mechanics gives the following con-
vention for the prediction of measurement results for measuring a quantity given by
a self-adjoint operator A: One computes a number of possible idealized measurement
values, the eigenvalues of A, of which one is exactly (according to most formulations)
or approximately (if level spacings are below the measurement resolution) measured,
with probabilities computed fromA and the density operator ρ by the probability form
of Born’s rule. Thus, the eigenvalues are the true values of Born’s statistical interpre-
tation.

Because of the critique of Born’s rule, given in Chapter 14 of the Appendix, the
thermal interpretation explicitly rejects the part of Born’s rule that declares the eigen-
values of operators as the true values in a measurement. It differs from the tradition
created in 1927 by Jordan, Dirac, and von Neumann, and proclaims in direct opposi-
tion the alternative convention that one computes a single, possibly idealized, mea-
surement value, the q-expectation

A := ⟨A⟩ := Tr ρA

of A, which is approximately measured. Therefore, the true values of the thermal in-
terpretation are the q-expectations rather than the eigenvalues.

As a result of the multivaluedness of the true values, Born’s statistical interpre-
tation needs probabilities in the very foundations of quantum physics. In contrast,
as a result of the single-valuedness of the true values in the thermal interpretation,
probabilities are no longer needed in the foundations of quantum physics.
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Note that there is no necessity for a Gaussian error distribution. If one measure
something with true value 0.37425 with a 4 digit digital device, the error distribution
will be discrete, not Gaussian.

To quantitatively assess the difference in the two interpretations, we consider the
spectrum SpecA of a linear operator on a Euclidean spaceℍ (a common domain of
all relevant q-observables of a system), defined as the set of all λ ∈ ℂ for which no
linear operator R(λ) from the completionℍ ofℍ toℍ exists, such that (λ − A)R(λ) is
the identity. SpecA is always a closed set.

A linear operator A ∈ Linℍ is called essentially self-adjoint if it is Hermitian
and its spectrum is real (that is, a subset ofℝ). For N-level systems, whereℍ is finite-
dimensional, the spectrum coincides with the set of eigenvalues, and every Hermi-
tian operator is essentially self-adjoint. In infinite dimensions, the spectrum contains
the eigenvalues, but not every number in the spectrum must be an eigenvalue, and
whether a Hermitian operator is essentially self-adjoint is a question of correct bound-
ary conditions.

Theorem 10.6.1. Let A be essentially self-adjoint, with value A := ⟨A⟩ and q-standard
deviation σA in a given state. Then the spectrum of A contains some real number λ
with

|λ − A| ≤ σA. (10.16)

In particular, in the special case, where, in some state, A has a sharp value, defined by
σA = 0, then the value ⟨A⟩ belongs to the spectrum.

Proof. The linear operator B = (A − A)2 − σ2A is a quadratic function of A. Hence, its
spectrum consists of all λ := (λ − A)2 − σ2A with λ ∈ SpecA; in particular, it is real.
Put λ0 := inf SpecB. Then B − λ0 is a Hermitian operator with a real, nonnegative
spectrum, hence positive semidefinite. (In infinite dimensions, this requires the use
of the spectral theorem.) Thus, B− λ0 ≥ 0 and 0 ≤ ⟨B− λ0⟩ = ⟨(A−A)2⟩−σ2A − λ0 = −λ0.
Therefore, λ0 ≤ 0. Since SpecB is closed, λ0 is in the spectrum, hence has the form
(λ −A)2 − σ2A with λ ∈ SpecA. This λ satisfies (10.16). The final claim for σA = 0 follows
immediately.

Therefore, the difference between the traditional and the thermal interpretation is
already within the uncertainty, and hence—from a statistical perspective—never sig-
nificant. Therefore, both interpretations are in equal agreement with the experimen-
tal record. The same number obtained by ameasurement may be interpreted in a dual
way: It both measures some random eigenvalue to high (in the idealization even infi-
nite) accuracy, and it simultaneously measures the q-expectation to low accuracy. In
both cases, the measurement involves an additional uncertainty related to the degree
of reproducibility of the measurement, given by the standard deviation of the results
of repeated measurements. Tradition and the thermal interpretation agree that this
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uncertainty is at least

σA := √⟨A2⟩ − ⟨A⟩2,

the uncertainty appearing in Heisenberg’s uncertainty relation.

10.7 What should be the true value?
A student has read such and such a number on his thermometer. He has taken no precautions. It
does not matter; he has read it, and if it is only the fact which counts, this is a reality […] Experiment
only gives us a certain number of isolated points. They must be connected by a continuous line, and
this is a true generalisation. But more is done. The curve thus traced will pass between and near the
points observed; it will not pass through the points themselves. Thus we are not restricted to gener-
alising our experiment, we correct it; and the physicist who would abstain from these corrections,
and really content himself with experiment pure and simple, would be compelled to enunciate very
extraordinary laws indeed.

Henri Poincaré, 1902 [241, pp. 142f]

As an illustration of the differences in the interpretation, we first consider some piece
of digital equipment with 3-digit display, measuring some physical quantity X, using
N independent measurements. Suppose themeasurement results were 6.57 in 20% of
the cases, and 6.58 in 80% of the cases. Every engineer or physicist would compute
themean X = 6.578, the variance σ2X = ⟨(X −X)

2⟩ = 0.2 ⋅0.0082 +0.8 ⋅0.0022 = 16 ⋅ 10−6,
and the standard deviation σX = 0.004, and would conclude that the true value of the
quantity X deviates from 6.578 by an error of the order of 0.004N−1/2.

Next we consider the measurement of a Hermitian quantity X ∈ ℂ2×2 of a 2-state
quantum system in the pure up state, using N independent measurements, and sup-
pose that we obtain exactly the same results. The thermal interpretation proceeds as
before and draws the same conclusion. But Born’s statistical interpretation proceeds
differently and claims that there is nomeasurement error. Instead, eachmeasurement
result reveals one of the eigenvalues x1 = 6.57 or x2 = 6.58 in an unpredictable fash-
ion with probabilities p = 0.2 and 1 − p = 0.8, up to statistical errors of order O(N−1/2).
ForX = ( 6.578 0.004

0.004 6.572 ), both interpretations of the results for the 2-state quantum system
are consistentwith theory.However, Born’s statistical interpretationdeviates radically
from engineering practice, without any apparent necessity.

Finally, we consider the energy measurement of an unknown system with dis-
crete, unknown energy levels E1 < E2 < ⋅ ⋅ ⋅, assumed to be simple eigenvalues of
the Hamiltonian. We also assume that the system is in a pure state a1|E1⟩ + a2|E2⟩,
where the kets denote the eigenstates of the Hamiltonian, and |a1|2 = p, |a2|2 = 1 − p;
for simplicity, higher levels than the lowest two are assumed to be absent. As a con-
sequence, the q-expectation of the energy (represented by the Hamiltonian) can be
exactly calculated, giving E = pE1 + (1 − p)E2. The uncertainty of the energy can be
exactly calculated, too, giving σE = √p(1 − p)|E1 − E2|.
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10.7 What should be the true value? | 179

Something analogous holds for the measurement of any quantity of an arbitrary
2-state system, such as a spin. According to the experimental record, the response of
a good detector produces measurement results E concentrated at two spots of the de-
tector, just as what one gets whenmeasuring a classical diffusion process in a double-
well potential (see, for example, Hongler & Zheng [136]). Born’s rule therefore says
in the present situation that the measurement results are quantized. This results in a
bimodal distribution with two sharp peaks, with details depending on the detection
method used and its resolution.

In a frequently used idealization that ignores the limited efficiency of a detector,
the distribution may even be assumed to be 2-valued, with measurement results that
take only one of two values E1 and E


2, corresponding to the twomodes of the bimodal

distribution.
According to the thermal interpretation, eachmeasurement result E is taken to be

an approximation of the true value E, with an error |E − E| of order at least σE . In the
limit of arbitrarilymany repetitions, themeanvalueof the approximations approaches
E, and their standarddeviation approachesσE . The observeddiscreteness is explained
as an effect due to the recording device. The latter introduces a systematic discretiza-
tion error, analogous to the rounding errors in the introductory illustration. The bi-
modal distribution of the measurement results may be due to environment-induced
randomness and environment-induced dissipation, as for a classical, environment-
induced diffusion process in a double-well potential. It may also be due to the ex-
perimental setup. For example, the arrangement in a Stern–Gerlach experiment to-
gether with simple theory leads to two beams, which accounts for the approximate
2-valuedness of the response at the screen. The thermal interpretation attributes the
discreteness to the detection setup, not to the true value of the spin.

According to Born’s statistical interpretation in the standard formulation,5 “the
measured result will be one of the eigenvalues”, each actual measurement result E is
claimed to be one of the exact (in general irrational) values E1 or E2, and there is no
measurement error.6 However, the measurement result is not reproducible: Multiple

5 This is the formulation appearing in Wikipedia [306]. Griffiths & Schroeter [109, pp. 133] de-
clare, “If you measure an observable […] you are certain to get one of the eigenvalues”. Peres [233,
pp. 95] defines, “each one of these outcomes corresponds to one of the eigenvalues of A; that eigen-
value is then said to be the result of a measurement of A”. Textbooks such as Nielsen & Chuang [218,
pp. 84f] seem to avoid the issue by not referring to eigenvalues at all. But their declaration, “Quantum
measurements are described by a collection {Mm} of measurement operators. […] The index m refers
to the measurement outcomes that may occur in the experiment. […] the probability that resultm oc-
curs”, with a formula that summed over all m gives the value 1, still assumes that the values m are
exact results—otherwise each of several approximations to the same intended result would have to be
represented by a differentMm, and their summation would not give 1.
6 It appears unrealistic that actual measurement results can be arbitrary irrational numbers. To rem-
edy this, one might consider a more liberal reading of the Born rule, where some additional measure-
ment error might be acceptable. This would have the consequence that Born’s rule is no longer about

Brought to you by | Stockholm University Library
Authenticated

Download Date | 10/28/19 6:31 PM



180 | 10 Measurement

repetition of the measurement results in a random sequence of values E1 and E2, with
probabilities p and 1 − p, respectively. In the limit of arbitrarily many repetitions, the
meanvalue of this sequence approachesA, and the standarddeviation approachesσE .

If the energy levels are exactly known beforehand (or if the “energy” actually rep-
resents a component of a spin variable), one can calibrate the pointer scale to make
E1 = E1 and E2 = E2. Then, as long as one ignores the idealization error, both in-
terpretations become experimentally indistinguishable. However, in the more real-
istic case, where energy levels are only approximately known and must be inferred
experimentally—the common situation in spectroscopy, the thermal interpretation, in
agreement with the standard recipes for drawing inferences from inaccuratemeasure-
ment results, still gives a correct account of the actual experimental situation,whereas
Born’s statistical interpretation paints an inadequate, idealized picture only.

measurements but about idealized measurements, whose observations are theoretical numbers, not
actual results. Thus, the liberal reading of Born’s rule would be a purely theoretical construct, silent
about actualmeasurement results. I amnot aware of any discussion in the published literature of such
a liberal reading.
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This chapter presents themeasurement problem from the point of view of the thermal
interpretation of quantum physics.

Everything physicists measure is measured in a thermal environment, for which
statistical thermodynamics is relevant. The thermal interpretation agrees with how
one interprets measurements in thermodynamics, the macroscopic part of quantum
physics, derived via statistical mechanics. By its very construction, the thermal inter-
pretation naturally matches the classical properties of our quantum world: The ther-
mal interpretation assigns states—and a realistic interpretation for them—to individ-
ual quantum systems, in a way that large quantum systems are naturally described by
classical observables.

Since measurement devices are large quantum systems, this is the key to solving
the measurement problem. We discuss the role played by macroscopic systems and
the weak law of large numbers in getting readings with small uncertainty. Since quan-
tum physics makes many deterministic predictions, for example regarding observed
spectra, but also assertions about probabilities, we distinguish deterministic and sta-
tistical measurements.

To clarify the meaning of the concept of measurement, we postulate (in Sec-
tion 11.1) a measurement principle that defines what it means in the thermal interpre-
tation tomeasure a quantity with a specified uncertainty. This turns themeasurement
problem from a philosophical riddle into a scientific problem in the domain of quan-
tumstatisticalmechanics, namelyhow thequantumdynamics correlatesmacroscopic
readings from an instrument with properties of the state of a measured microscopic
system.

The essence of scientific practice is the reproducibility of measurements, dis-
cussed in Section 11.2. Unlike in traditional interpretations, single, nonreproducible
observations do not count as measurements, since this would violate the repro-
ducibility of measurements—the essence of scientific practice. As a consequence,
the measurement of a Hermitian quantity A is regarded as giving an uncertain value
approximating the q-expectation ⟨A⟩ rather than (as tradition wanted to have it) as
an exact revelation of an eigenvalue of A. This difference is most conspicuous in the
interpretation of single discrete microscopic events. Except in very special circum-
stances, these are not reproducible. Thus, they have no scientific value in themselves
and do not constitute measurement results. Scientific value is, however, in ensembles
of such observations, which result in approximate measurements of q-probabilities
and q-expectations.

Sections 11.3 and 11.4 distinguish deterministic and statistical measurements, de-
pending on whether a single observation is reproducible, and discuss the role played
by macroscopic systems and the weak law of large numbers in getting readings with
small uncertainty. How tomeasure the q-probabilities of events, described in terms of

https://doi.org/10.1515/9783110667387-011
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POVMs, is discussed in Section 11.5. Section 11.6 poses the measurement problem as a
problemof the statisticalmechanics ofmeasurement devices, and discuss recentwork
by Allahverdyan, Balian, and Nieuwenhuizen on its resolution. Section 11.7 discusses
the problem how, in the thermal interpretation, discrete events can arise, although q-
expectations are by their very nature continuous. This is resolved by pointing to work
by Breuer and Petruccione on piecewise deterministic processes (PDP). Section 11.8
sheds additional light on the origin of discrete events by an analysis of the role dissi-
pative bistability plays in obtaining discreteness in classical physics.

11.1 Measurement protocols

The universe does not come partitioned into physical systems and measurement de-
vices (in the following often called instruments or detectors) to measure their prop-
erties; rather these are features imposed on Nature by the scientific culture.

There does not seem to be any conceptual study that would reliably define what
qualifies as aphysical systemor adetector.However, to draw formal conclusions about
measurement in simplified model universes defined in a mathematical framework,
we need at least to be able to tell precisely what constitutes a measurement in such
a model universe. In order that these concepts get a proper meaning, they must be
defined through theory in an appropriate conceptual framework.

Therefore, good foundations, including a good measurement theory, should be
able to justify the informal consensus of quantum theory and its experimental prac-
tice by defining additional formal concepts about what constitutes a measurement.
To be satisfactory, these must behave within the theory just as their informal relatives
with the same name behave in reality. Then instrument builders may use the theory
to inform themselves of what can possibly work, and instrument calibration assumes
reliable laws of physics.

Thus, measurement must be grounded in theory, not—as in the traditional foun-
dations—the otherway round! In complete foundations, there are formal objects in the
mathematical theory corresponding to all informal objects discussed by physicists,
including those used when designing and performing measurements. Then talking
about the formal objects and talking about the real objects is essentially isomorphic.

According to the thermal interpretation, properties of the system to be measured
are encoded in the state of the system and its dynamics. This state and what can be
deduced from it are the only objective properties of the system. On the other hand,
a measuring instrument measures properties of a system of interest. The measured
value—a pointer reading, a sound, a counter value, et cetera—is read off from the in-
strument, and hence is primarily a property of the measuring instrument and not one
of the measured system. From the properties of the instrument (the instrument state),
one can measure or compute the measurement results. Measurements are possible
only if the microscopic laws imply quantitative relations between properties of the
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11.1 Measurement protocols | 183

measured system (that is, the system state) and the values read off from the measur-
ing instrument (properties of the detector state).

This—typically somewhat uncertain—relation was specified in the rule (M) from
Section 10.1. Considering only properties determined by a single q-expectation ⟨A⟩,
we get as special case the principle that defines, in agreement with the general un-
certainty principle (GUP) from Section 3.1 and today’s NIST standard for specifying
uncertainty (Taylor & Kuyatt [284]), what it means to have measured a quantity.

(MP) Measurement principle: A macroscopic quantum device qualifies as an in-
strument for approximately, with uncertainty Δa, measuring a Hermitian quantity A of
a system with density operator ρ, if it satisfies the following two conditions:
(i) (uncertainty) All measured results a deviate fromAby approximatelyΔa. Themea-

surement uncertainty is bounded below by Δa ≥ σA.
(ii) (reproducibility) If the measurement can be sufficiently often repeated on systems

with the same or a sufficiently similar state, then the sample mean of (a − A)2 ap-
proaches Δa2.

Consistent with the general uncertainty principle (GUP) (from Section 3.1), the mea-
surement principle (MP) demands that any instrument formeasuring a quantityA has
an uncertainty Δa ≥ σA.

As customary, one writes the result of a measurement as an uncertain number
a ± Δa consisting of the measured value a and its uncertainty deviation Δa, with the
meaning that the error |a − A| is at most a small multiple of Δa. Because of possible
systematic errors, it is generally not possible to interpret a as mean value and Δa as
standard deviation. Such an interpretation is valid only if the instrument is calibrated
to be unbiased.

The validity of the measurement principle for a given instrument must either be
derivable from quantummodels of the instrument by a theoretical analysis, or it must
be checkable by experimental evidenceby calibration. In general, the theoretical anal-
ysis leads to difficult problems in statisticalmechanics that can be solved only approx-
imately, and only in idealized situations. From such idealizations, one then transfers
insight to make educated guesses in cases where an analysis is too difficult, and ad-
justs parameters in the design of the instrument by an empirical calibration process.

It is an open problem how to prove this from the statistical mechanics of mea-
surement models. But that such a limit cannot be overcome has been checked in the
early days of quantummechanics by a number of thought experiments. Today it is still
consistent with experimental capabilities and no serious proposals exist that could
possibly change this situation.

The measurement principle (MP) creates the foundation of measurement theory.
Physicists doing quantum physics (even those adhering to the shut-up-and-calculate
mode of working) use this rule routinely, and usually without further justification.
The rule applies universally. No probabilistic interpretation is needed. In particular,
the first part applies also to single measurements of single systems.
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Real experiments are (and must be) designed such that they allow one to deter-
mine approximately the relevant properties of the state under study, hence the val-
ues of all quantities of interest. The uncertainties in the experiments imply approxi-
mations, which, if treated probabilistically, need an additional probabilistic layer. In-
deed, the formulation “at least of the order of σA” allows for the frequent situation that
the measurement uncertainty is larger than the intrinsic (theoretical) uncertainty σA.
Expectations from this secondary layer, which involve probabilistic statements about
situations that are uncertain due to neglected, but in principle observable, details (see
Peres [232]), happen to have the same formal properties as the values on the primary
layer, though their physical origin and meaning is completely different. Thus, prob-
ability and statistics have the same role as in classical physics, namely as the art
and science of interpreting collections of data obtained by measurements, rather than
figuring in the foundations.

According to (MP), exact measurements have Δa = 0, and hence σA = 0. This in-
deed happens in the measuring of systems in a pure state when the state vector is an
eigenstate of the quantity measured. Therefore, part of Born’s rule holds: Whenever
a quantity A is measured exactly,1 its value is an eigenvalue of A. But for inexact (that
is, almost all) measurements, the thermal interpretation rejects Born’s rule as an ax-
iom, defining what counts as ameasurement result. With this move, all criticism from
Chapter 14 of the Appendix becomes void, since Born’s rule remains valid only in a
limited validity; see Section 11.8.

11.2 Statistical and deterministic measurements

To understand the precise meaning of the notion of measurement, we look at mea-
surements in the context of classical physics and chemistry. There are two basic
kinds of measurements, destructive measurements and nondestructive measure-
ments.

Nondestructivemeasurements either leave the state of the object measured un-
changed (such as in the measurement of the length of a macroscopic object), or mod-
ify it temporarily during the measurement (for example, temporarily deforming it to
measure the stiffness) in such a way that the object returns to its original state after
themeasurement is completed.Destructivemeasurements permanently change the
state of the objectmeasured, usually by destroying all or part of it during themeasure-
ment process. Examples are the determination of the age of an archeological artifact
by dendrochronology, or many traditional methods of finding the chemical composi-
tion of a material.

1 Note that the discrete particle spin measurements in a Stern–Gerlach experiment, say, are not ex-
act measurements in the present sense. They measure exactly only a coarse-grained position on the
screen, but are very low-accuracy measurements of the particle spin q-expectations; see Section 13.4.
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In both cases, themeasurement gives someposterior information about theprior
state, that is, the state of the object before the start of themeasurement process. In the
case of destructive measurements, it usually also gives some information about the
products of the destruction, from which properties of the prior states are deduced by
reasoning.

A characteristic context of destructive measurements is the presence of a large,
sufficiently homogeneous object. Tiny parts of it are subjected to destructivemeasure-
ments todiscover their relevant properties. Thehomogeneity of the object then implies
that the properties deduced from the destructive measurements are also properties of
the remainder of the object. Thus, destructivemeasurements of a tiny fraction of a ho-
mogeneous object give information about the whole object, including its unmeasured
part. By our definition, we obtain in this way a nearly nondestructive measurement of
the whole object.

Alternatively, a large number of essentially identical objects are present, a few of
which are subjected to a destructivemeasurement. The results of themeasurement are
then taken as being representative of the properties of the unmeasured objects. In case
themeasurements on the objects measured do not agree, one can still make statistical
statements about the unmeasured objects, approximately valid within the realm of
validity of the law of large numbers. However, this no longer gives valid information
about a single unmeasuredobject, but only information about thewhole populationof
unmeasured objects. Thus, one may regard the measurement onmultiple trial objects
as a measurement of the state of the whole population.

Similar to classical destructive measurements, experiments measuring individ-
ual particles change (unless specially tuned to be “non-demolition measurements”)
the state of the individual particles in an unpredictable way. Just as in a destructive
measurement, their precise state before measurement can never be ascertained. Only
probabilities for their collective behavior can be given by averaging over many obser-
vations of different realizations.

For example, the analysis of experimental particle collisions is based on mea-
suring the momentum and charge of many individual collision products. But individ-
ual collision events (the momentum and charge of the individual collision products)
are not predicted by the theory—only the possibilities and their collective statistics,
their distribution in a collectionof equally prepared events. Indeed, probabilitiesmean
nothing for a single collision. What does it mean that the particular collision event
recorded at a particular time in a particular place is obtained with probability 0.07?
Nothing objective—the single collision simply happened andhas no associated proba-
bility. A scientific statement about probabilities is always a statement about a process
that can be repeated many times under essentially identical conditions.

The requirement (MP) for a measuring instrument includes the reproducibility of
the resulting measurement values. Reproducibility in the general sense that all sys-
tems prepared in the same state have to behave alike when measured is a basic re-
quirement for all natural sciences. The term “alike” has two different interpretations
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depending on the context: Either “alike” is meant in the deterministic sense of “ap-
proximately equal within the specified accuracy”. Or “alike” ismeant in the statistical
sense of “approximately reproducing in the long run the same probabilities andmean
values”. An object deserves the name “instrument” only if it behaves in one or the
other of these ways.

Corresponding to the two meanings, we distinguish two kinds of measuring in-
struments, deterministic ones and statistical ones. Consequently, the quantitative re-
lationship between the system state and the measurement results may be determinis-
tic or statistical, depending on what is measured.

Radioactive decay, when modeled on the level of individual particles, is a typi-
cal statistical phenomenon. It needs a stochastic description as a branching process,
similar to classical birth and death processes in biological population dynamics. The
same holds for particle scattering, the measurement of cross sections, since particles
may be created or annihilated, and for detection events, such as recording photons by
a photoelectric device or particle tracks in a bubble chamber.

On the other hand, although quantum physics generally counts as an intrinsi-
cally probabilistic theory, it is important to realize that it not only makes assertions
about probabilities, but also makes many deterministic predictions verifiable by ex-
periment. These deterministic predictions fall into two classes:
(i) Predictions of numerical values believed to have a precise value in Nature:

– The most impressive proof of the correctness of quantum field theory in mi-
crophysics is the magnetic moment of the electron, predicted by quantum
electrodynamics (QED) to the phenomenal accuracy of 12 significant digit
agreement with the experimental value. It is a universal constant, deter-
mined solely by the two parameters in QED, the electron mass and the fine
structure constant.

– QED also predicts correctly emission and absorption spectra of atoms and
molecules, both the spectral positions and the corresponding line widths.

– Quantum hadrodynamics allows the prediction of the masses of all isotopes
of the chemical elements in terms of models with only a limited number of
parameters.

(ii) Predictions of qualitative properties, or of numerical values believed to be not ex-
actly determined, but which are accurate with a tiny, computable uncertainty.
– Themodern form of quantummechanics was discovered through its success-

ful description and organization of amultitude of spectroscopic details on the
position and width of spectral lines in atomic and molecular spectra.

– QED predicts correctly the color of gold, the liquidity of mercury at room tem-
perature, and the hardness of diamond.

– Quantum physics enables the computation of thermodynamic equations of
state for a huge number of materials. Equations of state are used in engineer-
ing in a deterministic manner, with negligible uncertainty. Engineers usually
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need not explicitly consider quantum effects, since these are encoded in their
empirical formulas for the equations of states.

– Quantum chemistry predicts correctly rates of chemical reactions.
– From quantum physics, one may also compute transport coefficients for de-

terministic kinetic equations used in a variety of applications.

Thus, quantum physics makes both deterministic and statistical assertions, depend-
ing on which system it is applied to and on the state or the variables to be determined.
Statistical mechanics is mainly concerned with deterministic prediction of class (ii) in
the above classification.

Predictions of class (i) are partly related to spectral properties of the Hamiltonian
of a quantum system, and partly to properties deduced from form factors, which are
deterministic byproducts of scattering calculations. In both cases, classical measure-
ments account adequately for the experimental record.

The traditional interpretations of quantum mechanics do only rudimentarily ad-
dress the deterministic aspects of quantum mechanics, requiring very idealized as-
sumptions (being in an eigenstate of the quantity measured) that are questionable in
all deterministic situations described above.

11.3 Macroscopic systems and deterministic instruments

Amacroscopic system is a system large enough to be described sufficiently well by
the methods of statistical mechanics,2 where, due to the law of large numbers, one
obtains essentially deterministic results.

The weak law of large numbers implies that quantities averaged over a large pop-
ulation of identically prepared systems become highly significant when their value
is nonzero, even when no single quantity is significant. This explains the success of
Boltzmann’s statistical mechanics to provide an effectively deterministic description
of ideal gases, where all particles may be assumed to be independent and identically
prepared.

In real, nonideal gases, the independence assumption is only approximately valid
because of possible interactions, and in liquids, the independence is completely lost.
The power of the statistical mechanics of Gibbs lies in the fact that it allows replacing
simple statistical reasoning on populations, based on independence by more sophis-
ticated algebraic techniques that give answers even in extremely complex interacting
cases. Typically, the uncertainty is of the order O(N−1/2), where N is the mean number

2 However, as discussed by Sklar [275], both the frequentist and the subjective interpretation of prob-
ability in statistical mechanics have significant foundational problems, already in the framework of
classical physics. These problems are absent in the thermal interpretation, where single systems are
described by mixed states, without any implied statistical connotation.
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of identicalmicrosystemsmaking up themacroscopic system. Thus, the thermal inter-
pretation associates with macroscopic objects, essentially classical quantities, whose
uncertain value (q-expectation) has a tiny uncertainty only.

In particular, the macroscopic pointer of a measurement instrument always has a
well-defined position, given by the q-expectation of the Heisenberg operator x(t) cor-
responding to the center of mass of its N ≫ 1 particles at time t. The uncertain pointer
position at time t is ⟨x(t)⟩ ± σx(t), where the q-expectation is taken in the Heisenberg
state of the universe (or any sufficiently isolated piece of it). Therefore, the position
is fully determined by the state of the pointer—but it is an uncertain position. By the
law of large numbers, the uncertainty σx(t) is of order N−1/2. Typically, this limit accu-
racy is much better than the accuracy of the actual reading. Thus, we get well-defined
pointer readings, leading within the reading accuracy to deterministic measurement
results.

Whether by this or by other means, whenever one obtains an essentially deter-
ministic measurement result, we may say that measuring is done by a deterministic
instrument, defined as follows:

A deterministic instrument is a measuring instrument that measures objec-
tive properties, deterministic functions of the state ρ of the system measured, within
some known margin of accuracy, in terms of some property read from the instru-
ment, a macroscopic system. A special case is the measurement of a quantity A,
since the uncertain value A = Tr ρA of A is a function of the state ρ of the system.
Thus, if measurements yield values a ≈ A within some uncertainty Δa, the cor-
responding instrument is a deterministic instrument for measuring A within this
accuracy.

Not all reliably measurable macroscopic properties are naturally given as
q-expectations. For example, in equilibrium thermodynamics, temperature T, pres-
sure P, and chemical potential μ have no simple description in terms of microscopic
variables. They figure only as a parameter in the expression for the grand canonical
phase space density ρ = e−(H+PV−μN)/kT of the state. But T and P are computable from
ρ via the thermodynamic formalism of statistical mechanics, and hence are objec-
tive properties in the sense of the thermal interpretation. The definition (M), from
Section 10.1, of what it means to measure something therefore still applies. More gen-
erally, it applies (see Neumaier & Westra [214]) to arbitrary macroscopic thermal
systems in equilibrium, whose state is characterized by a collection of finitely many
extensive and intensive thermodynamic variables related by the standard thermody-
namic relations, expressed in terms of an equation of state for the materials making
up the thermal system.

In particular, themeasurement of temperature and pressure of, say, a single brick
of iron in equilibrium is a perfectly sensible special case of our definition (M) of what
it means to measure something. On the other hand, according to the traditional in-
terpretations, they are not even “observables”—although they are observable in any
meaningful sense of the word!

Brought to you by | Stockholm University Library
Authenticated

Download Date | 10/28/19 6:31 PM



11.4 Statistical instruments | 189

11.4 Statistical instruments

Themeasurement of a tiny,microscopic system, often consisting of only a single par-
ticle, is of a completely different nature. Now the uncertainties do not benefit from the
lawof large numbers, and the relevant quantities often are no longer significant, in the
sense that their uncertain value is already of the order of their uncertainties. In this
case, the necessary quantitative relations between properties of the measured system
and the values read off from the measuring instrument are only visible as stochastic
correlations.

The results of single measurements are no longer reproducibly observable num-
bers. In the thermal interpretation, a single detection event is therefore not regarded
as ameasurement of a property of ameasuredmicroscopic system, but only as a prop-
erty of the macroscopic detector correlated to the nature of the incident fields.

This is the essential part, where the thermal interpretation differs from tradition.
Indeed, from a single detection event, one can only extract very little information
about the state of a microscopic system. Conversely, from the state of a microscopic
system, one can usually predict only probabilities for single detection events.

All readings from a photographic image or from the scale of a measuring instru-
ment, done by an observer, are deterministicmeasurements of an instrument property
by the observer. Indeed, what is measured by the eye is the particle density of black-
ened silver on a photographic plate, or that of iron of the tip of the pointer on the
scale, and these are extensive variables in a continuummechanical local equilibrium
description of the instrument.

The historically unquestioned interpretation of such detection events as the mea-
surement of a particle position is one of the reasons for the failure of traditional in-
terpretations to give a satisfying solution of the measurement problem. The thermal
interpretation is here more careful and treats detection events instead as a statistical
measurement of particle beam intensity.

To obtain comprehensive information about the state of a single microscopic sys-
tem is therefore impossible. To collect enough information about the prepared state,
and hence the state of a system measured, one needs either time-resolved measure-
ments on a single stationary system (available, for example, for atoms in ion traps or
for electrons in quantum dots), or a population of identically prepared systems. In the
latter case, one can get usefulmicroscopic state information through quantum tomog-
raphy; see Section 11.5.

Thus, in case of measurements on microscopic quantum systems, the quantita-
tive relationship between measurement results and measured properties only takes
the form of a statistical correlation. The reproducibly observable items, and hence the
carrier of scientific information, are statistical mean values and probabilities. These
are indeed predictable by quantum physics. But—in contrast to the conventional ter-
minology applied to single detection events for photons or electrons—the individual
events no longer count as definite measurements of single system properties.
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This characteristics of the thermal interpretation is an essential difference to tra-
ditional interpretations, for which each event is a definite measurement.

A statistical instrument determines its final measurement results from a large
number of raw measurements by averaging or by more advanced statistical proce-
dures, often involving computer processing. Again, due to the law of large numbers,
one obtains essentially deterministic results, but now from very noisy raw measure-
ments. Examples include low-intensity photodetection, the estimation of probabilities
for classical or quantum stochastic processes, astronomical instruments for measur-
ing the properties of galaxies, or themeasurement of population dynamics in biology.

This behavior guarantees reproducibility. In other words, systems prepared in the
same state behave in the sameway undermeasurement—in a deterministic sense for a
deterministic instrument, and in a statistical sense for a statistical one. In both cases,
the finalmeasurement results approximate, with limited accuracy, the value of a func-
tion F of the state of the system under consideration.

11.5 Probability measurements
When it uses probabilities, […] science regards them […] as measurable (and calculable) physical
quantities like lengths, energies, and wavelengths. […] The probability of a truly single event is in-
trinsically unmeasurable and […] science has nothing to say about [it.] To obtain the value of a
physical quantity, one must measure it a number of times. Each measurement contains an error,
and the ‘true’ value is (usually) computed as the arithmetic mean of all measured values. […] in a
similar way [we] measure the relative frequency […] of an event in a series of trials. Each relative
frequency contains an error, and the ‘true’ probability is computed as the mean of the relative fre-
quencies over a number of series. […] nothing strange or inconsistent is left in the idea of probability
as a measurable physical quantity.

Henry Margenau, 1950 [179, pp. 250–252]

By its definition, the notions of q-expectations and q-probabilities belong to the for-
mal core of quantum mechanics and are independent of any interpretation. But in
the thermal interpretation all q-expectations, and in particular all q-probabilities, are
among the objective properties. We discuss here basic aspects of their measurement.

By the law of large numbers, q-expectations can be measured with (in princi-
ple) arbitrarily high accuracy by taking samplemeans of low-accuracymeasurements,
whenever there is a device (the preparation)—for example, a particle accelerator—
that produces a large number of independent copies (realizations) of the same quan-
tum system. The accuracy improves by a factor of√N, where N is the sample size.

In the same way, the q-probabilities p are approximately measurable as relative
frequencies. As a consequence of theweak law of large numbers (3.11), the uncertainty
of the relative frequency pN , defined as the sample mean of ideal binary measure-
ments in a sample of N independent realizations of the statement P, is σ = σP√N =
√p(1 − p)/N . This uncertainty approaches zerowhen the sample sizeN gets arbitrarily
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large. Thus, measuring a probability by a relative frequency gives (in principle) arbi-
trarily accurate results.

This gives a fully adequate operational definition of probabilities without any log-
ical problems of the same quality as operational definitions of highly accurate length
or time measurements. The q-probabilities are theoretical observables; they are mea-
sured as relative frequencies, to some reasonable accuracy that can be quantified by
the associated uncertainty. We draw conclusions about sufficiently uncertain situa-
tions based on observed sample means and relative frequencies on a sample of signif-
icant size, and we quantify our remaining uncertainty by statistical safeguards (con-
fidence intervals, et cetera), well knowing that these sometimes fail. For example, the
5σ-rule for the discovery of elementary particles3 tries to guard against such failures.
This view of probabilities as measurable entities is the one described in the above
quote by Margenau (if ‘final’ is read for ‘true’).

Thus, probability has an objective interpretation precisely to the extent that ob-
jective protocols for taking the sample measurements, that is, how to distinguish a
positive from a negative test, are agreed upon. Any subjectivity remaining lies in the
question of deciding which protocol should be used for accepting a measurement as
‘correct’. Different protocols may give different results. Both classically and quantum
mechanically, the experimental context needed to define the protocol influences the
outcome. In particular, there is a big difference between the description of an event
before it occurs (predicting it) or after it occurs (analyzing it). This is captured rigor-
ously in classical probability theory by conditional probabilities (see Section 3.4), and
less rigorously in quantum physics by the so-called collapse of the wave function,
where the description of the state of a particle is different before and after it passes a
filter (polarizer, magnet, double slit, et cetera). Thus, we may view the collapse as the
quantum analogue of the change of conditional probability when the context changes
due to new information.

Measurements in the form of discrete events (such as the appearance of clicks,
flashes, or particle tracks) may be described in terms of an event-based instrument
characterized by a discrete family of possible measurement results a1, a2, . . . that may
be real or complex numbers, vectors, or fields, and nonnegative Hermitan quantities
P1,P2, . . . satisfying

P1 + P2 + ⋅ ⋅ ⋅ = 1. (11.1)

The nonnegativity of the Pk implies that all q-probabilities

pk = ⟨Pk⟩ = Tr ρPk (11.2)

3 The 5σ-rule requires for a new particle evidence showing a deviation of at least 5σ from the best
results predicted with an uncertainty of σ without the new particle.
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are nonnegative, and (11.1) guarantees that the q-probabilities always add up to 1. By
its definition, the notion of q-probabilities belongs to the formal core of quantumme-
chanics and is independent of any interpretation.

Unlike in all traditional interpretations, the thermal interpretation considers the
observable result ak not as the exact measurement result of some “observable” with
counterintuitive quantum properties, but as a (due to the tiny sample size very low
accuracy) statistical measurement of some q-expectation.

In the thermal interpretation all q-expectations, and in particular, all q-proba-
bilities are among the objective properties. As described in Section 11.5, a q-probability
p may be approximately measured as relative frequency, whenever there is an event-
generating device (the preparation) that produces a large number N of independent
copies (realizations) of the same quantum system. In this case, we require that if the
measured system is in the state ρ, the instrument gives the observable result ak with a
relative frequency approaching the q-probability pk as the sample size gets arbitrarily
large.

An event-based instrument is a statistical instrument measuring the probabil-
ity of events modeled by a discrete (classical or quantum) statistical process. In the
quantum case, it is mathematically described by a positive operator-valued mea-
sure, short POVM, defined as a family P1,P2, . . . of Hermitian, positive semidefinite
operators satisfying (11.1) (or a continuous generalization of this).

POVMs originated around 1975 in work by Helstrom [123] on quantum detection
and estimation theory and are discussed in some detail in Peres [232]. They describe
the most general quantum measurement of interest in quantum information theory.
Which operators Pk correctly describe a statistical instrument can, in principle, be
found out by suitable calibration measurements. Indeed, if we feed the instrument
with enough systems prepared in known states ρj, we canmeasure approximate prob-
abilities pjk ≈ ⟨Pk⟩j = Tr ρjPk . By choosing the states diverse enough, one may ap-
proximately reconstruct Pk from this information by a process called quantum to-
mography. In quantum information theory, theHilbert spaces are finite-dimensional.
Hence, the quantities form the algebra 𝔼 = ℂN×N of complex N × N matrices. In this
case, the density operator is the densitymatrix ρ, a complex HermitianN ×N-matrix
with trace one, together with the trace formula

⟨A⟩ = Tr ρA.

Since ⟨1⟩ = 1, a set of N2 − 1 binary tests for specific states, repeated often enough,
suffices for the state determination. Indeed, it is easy to see that repeated tests for the
states ej, the unit vectors with just one entry 1 and other entries 0, tests the diagonal
elements of the densitymatrix, and since the trace is 1, one of these diagonal elements
can be computed from the knowledge of all others. Tests for ej + ek and ej + iek for all
j < k then allow the determination of the (j, k) and (k, j) entries. Therefore, frequent
repetition of a total of N − 1 + 2(N2) = N

2 − 1 particular tests determines the full state.
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The optimal reconstruction to a given accuracy, using aminimal number of individual
measurements, is the subject of quantum estimation theory, still an active frontier
of research.

Distinguished from a stochastic instrument performing event-based measure-
ments is an event-based filter, which turns an input state ρ with probability

pk := ⟨R
∗
kRk⟩

into an output state

ρk :=
1
pk

RkρR
∗
k .

Here the Rk are operators satisfying

∑
k
R∗kRk = 1.

Each case possible may be considered as a potential event; the collection of possible
events is then described by the POVM with Pk := R∗kRk .

11.6 Chaos, randomness, and quantum measurement
The coarse-graining involved in reducing the unitary dynamics of the universe to the
dissipative dynamics of an open system, described by a limited collection of relevant
quantities, leads to the neglect ofmanyhigh-frequency details. This results in stochas-
tic features, either in the models themselves, or in the relation between models and
Nature. In this way, the deterministic Ehrenfest dynamics of all q-expectations of the
universe gives rise to stochastic features at the coarse-grained level. The quantitative
derivation of the stochastic properties is therefore reduced to a problem of quantum
statistical mechanics.

Deterministic coarse-grained models are usually chaotic, introducing a second
source of randomness on amore tangible level. To explain the randomness inherent in
themeasurement of quantumobservables in a qualitativeway, it seems to be sufficient
to invoke the chaoticity of the coarse-grained approximations to equations of motion
of a system, including both the measured system and its measuring device.

Many coarse-grainedmodels are chaotic. In particular, we have seen in Section 6.1
how the coherent action principle (the Dirac–Frenkel variational procedure applied to
coherent states) gives coarse-grained approximations that only track a number of rel-
evant variables and exhibit chaotic behavior. A more well-known coarse-grained ex-
ample are the Navier–Stokes equations, used in practice to model realistic fluid flow.
They are well known to be chaotic and though deterministic in principle, they exhibit
in practice stochastic features that make up the phenomenon of turbulence. In gen-
eral, deterministic chaos, as present in classical mechanics, results in empirical ran-
domness.
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According to the thermal interpretation, this chaotic effective motion in reduced
description is responsible for the probabilistic features of quantum mechanics. The
empirical randomness is taken to be an emergent feature of deterministic chaos im-
plicit in the deterministic Ehrenfest dynamics of the universe discussed in Section 2.2.
Since the Ehrenfest dynamics is linear, it seems to be strange to consider it chaotic.
However, the chaotic nature appears once one restricts attention to the macroscopi-
cally relevant q-expectations, where the influence of the ignored q-expectations is felt
as a stochastic contribution to the effective coarse-grained dynamics of the relevant
q-expectations.

The dynamics we actually observe is the quantum dynamics of a more complex
system, coarse-grained to a dynamics of these few degrees of freedom—at increasing
level of coarse-graining described by Kadanoff–Baym equations, Boltzmann-type ki-
netic equations, and hydrodynamic equations, such as the Navier–Stokes equations.
These coarse-grained systems generally behave like classical dynamical systems with
regimes of highly chaotic motion.

In general, deterministic chaos manifests itself once one uses a coarse-grained,
locally finite-dimensional parameterization of the quantum states. This leads to an
approximation where, except in exactly solvable systems, the parameters characteriz-
ing the state of the universe (or a selected part of it) change dynamically in a chaotic
fashion.

As discussed in more detail in Section 6.8, Zhang & Feng [315] used the coherent
action principle, restricted to group coherent states, to get a coarse-grained system of
ordinary differential equations approximating the dynamics of the q-expectations of
macroscopic operators of certain multiparticle quantum systems. At high resolution,
this deterministic dynamics is highly chaotic. Whereas this study makes quite special
assumptions, it illustrates how although the basic dynamics in quantum physics is
linear, chaoticmotion results once attention is restricted to a tractable approximation.
This chaoticity is indeed a general feature of coarse-graining approximation schemes
for the dynamics of q-expectations or the associated reduced density functions. (For a
discussion of quantum chaos from a completely different perspective, see Peres [232,
p. 353ff] and the survey by Haake [111].)

According to the thermal interpretation, quantum physics is the basic framework
for the description of objective reality (including everything reproducible studied in
experimental physics), from the smallest to the largest scales. In particular, quantum
physics must give an account of whatever happens in an experiment, when both the
equipment and the systems under study are modeled on the quantum level. In ex-
periments probing the foundations of quantum physics, one customarily observes a
small number of field and correlation degrees of freedom (often simplified in a few
particle setting) by means of macroscopic equipment. To model the observation of
such a tiny quantum system by a macroscopic detector, one must simply extend the
coarse-grained description of the detector by adding a few additional quantum de-
grees of freedom for the measured system, together with the appropriate interactions.
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The metastability needed for a reliable quantum detector (for example, in a bubble
chamber) together with chaoticity then naturally leads to a random behavior of the
individual detection events.

In terms of the thermal interpretation, themeasurement problem—how to show
that an experimentally assumed relation between measured system and detector re-
sults is actually consistent with the quantum dynamics—becomes a precise problem
in quantum statistical mechanics.4 Of course, details must be derived in a mathemat-
ical manner from the theoretical assumptions inherent in the formal core.

A number of recent papers by Allahverdyan, Balian & Nieuwenhuizen (in the
following short AB&N), reviewed in Neumaier [201], addressed this issue. Here we
only discuss AB&N’s paper [7]. This paper carefully analyzes the assumptions regard-
ing the statistical mechanics used that actually go into the analysis in their long, de-
tailed paper [6]. The latter discusses an only slightly idealized, but on the whole real-
istic measurement process, formulated completely in terms of quantum dynamics.

To avoid circularity in their arguments, AB&N introduce the name q-expectation
value for ⟨A⟩ := Tr ρA considered as a formal construct rather than a statistical entity,
and similarly (as we do in Footnote 2 from Section 3.1) q-variance and other q-notions,
to be distinguished from their classical statistical meaning. This allows them to use
the formalism of statistical mechanics without any reference to prior statistical no-
tions. The statistical implications are instead derived from the analysis within this
formal framework (together with explicitly specified interpretation rules), resulting
in a derivation of Born’s rule and the time scales, in which the implied correlations
of microscopic states and measurement results are dynamically realized, based on a
unitary dynamics of the full quantum system involving the microscopic system, the
measurement device, and a heat bath modeling the environment.

Most important for the interpretation in [7] is AB&N’s “interpretative principle 1”:
ABN principle: If the q-variance of a macroscopic observable is negligible in rel-

ative size, its q-expectation value is identified with the value of the corresponding
macroscopic physical variable, even for an individual system.

This is just a special case of the basic uncertainty principle central to the thermal
interpretation of quantum physics!

11.7 The statistical mechanics of definite, discrete events

Generally in physics, invariance and the resulting reproducibility determine what
counts as an objective property. In 3-dimensional vision, observed length is not a
property of an observed object by itself, but a property of the object and the distance

4 Whenone insists on the rigid, far too idealized framework inwhichquantumphysicswas developed
historically, and in which it is typically introduced in textbooks, the measurement problem is instead
an ill-posed, vexing philosophical riddle.
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fromand the orientation relative to the observer. Extrapolation to zero distance viewed
orthogonally defines an invariant objective length. In relativity, length is a property
of the object, the distance from and the orientation relative to the observer. and in
addition the relative speed to the observer. Again, suitable extrapolation defines the
invariant objective length.

Science is about reproducible aspects of our world, and hence not all permanent
records, but only reproducible results count as measurement results. This is the main
difference between the thermal interpretation and traditional interpretations of quan-
tum mechanics.

As a consequence, a measurement of a Hermitian quantity A gives an uncertain
value approximating the q-expectation ⟨A⟩ rather than (as tradition wanted to have
it) an exact eigenvalue of A. This difference is most conspicuous in the interpretation
of single discrete events. Since most single microscopic observations are not repro-
ducible, they have no scientific value in themselves, and do not constitute measure-
ment results.5 Scientific value is, however, in ensembles of such observations, which
result in approximate measurements of q-probabilities and q-expectations.

In the thermal interpretation, the traditional difficulty to show that there is al-
ways a unique outcome is trivially solved, since by definition, the outcome of reading
a macroscopic quantity is its expectation value, with negligible uncertainty. Instead,
we now have a new difficulty absent in traditional interpretations: An explanation is
required why, although fed with a stationary interaction, certain detectors record ran-
dom individual events!

For example, why does a low-intensity beam of light produce in a photodetector
a discrete signal? The uncertain observed value is the q-expectation of a photocur-
rent, which a priori has a continuum of possible values. But observed are two clearly
different regimes that allow one to clearly distinguish between the occurrence and
the nonoccurence of a detection event. In the thermal interpretation, we do not con-
sider the single detector event as a property of the observed beam (“a particle arrived
through the beam”), since only the statistics of an ensemble of detector events (for ex-
ample, a Poisson distribution of the number of events in some large time interval) is
reproducible, and hence constitutes an objective property of the beam. But why these
discrete events can be clearly distinguished at all needs an explanation.

Section 6.6 of the book on open quantum systems by Breuer & Petruccione
[54, pp. 348–350] (in the following short B&P) addresses this issue. The dynamics of a
large quantum system, consisting of an observed systemand a detector observing it, is
treated there as a classical dynamical system for the density operator with stochastic
initial conditions, and reduced by appropriate coarse-graining to a classical stochas-

5 The same holds in classical stochastic models. If die casting is part of a stochastic system descrip-
tion, the single die cast tells nothing about the state of the model, and hence is of no value for the
scientific study of the model.
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tic equation for the coarse-grained stochastic density operator. The derivation is done
using standard assumptions fromclassical statisticalmechanics only, in the sameway
as one would proceed in statistical mechanics for any other classical dynamical sys-
tem.

The detector must include enough of the environment to produce irreversible re-
sults (and hence determines what is read out). B&P model the latter by assuming
separated time scales and the validity of the Markov approximation. Both assump-
tions hold only when the detector is big enough to be dissipative. (The latter is typi-
cally achieved by including in the detector a heat bath consisting of an infinite num-
ber of harmonic oscillators.) Since B&P make these assumptions without deriving
them, their analysis holds for general dissipative detectors. But—as always in statisti-
cal mechanics—one must check for any concrete application that these assumptions
are plausible.

In sufficiently idealized settings, these assumptions can actually be proved rigor-
ously, but this is beyond the scope of the treatment by B&P. Rigorous results (without
the discussion of selective measurement, but probably sufficient to establish the as-
sumptions used by B&P) were first derived by Davies 1974 and later papers with the
same title. See also the detailed survey by Spohn [276].

The stochastic equations discussed by B&P preserve the rank of the density oper-
ator, and hence can be applied to pure states, where the dynamics reduces in general
to that of a piecewise deterministic stochastic process (PDP), a diffusion process, or
a combination of both. The piecewise deterministic part accounts for the statistics of
discrete events.

In the cases treated by B&P in their Chapter 6 (usually for the pure case only),
the PDP corresponds to photodetection, which measures the particle number oper-
ator (with a discrete spectrum); the diffusion processes correspond to homodyne or
heterodynedetection,whichmeasure quadratures (with a continuous spectrum). B&P
obtain the latter from the PDP by a limiting process in the spirit of the traditional ap-
proach treating a continuous spectrum as a limit of a discrete spectrum.

But although the pointer reading is a position measurement of the pointer, what
is measured about the particle is not its position, but the variable correlated with the
pointer reading—the photon number or the quadrature. Particle position is as indeter-
minate as before. Indeed, investigation of the PDP process shows that the collapsed
states created by the PDP are approximate eigenstates of the number operator or the
quadrature. Thus, the PDP can be interpreted in Copenhagen terms as constituting the
repeated measurement of particle number or quadrature.

For photodetection, one gets at the end a PDP for the reduced state vector, only us-
ing classical probabilities in thewhole derivation. But after everything has been done,
the PDP may be interpreted in terms of quantum jumps, without having postulated
any irreducible “collapse” as in the Copenhagen interpretation (see Section 16.2 of the
Appendix). This suggests that, in general, collapse in a single observed system—in
the modern POVM version of the von Neumann postulates for quantum dynamics—is
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derivable from the unitary dynamics of a bigger system under the standard assump-
tions that go into the traditional derivations in classical statistical mechanics.

The arguments show that to go from unitarity to irreversible discrete events in
Hamiltonian quantummechanics, one does not need to assumemore than to go from
reversibility to irreversibility in Hamiltonian classical mechanics—namely a suitable
form of the Markov approximation. Statistical assumptions are not needed to make
pointers acquire awell-defined position or to create photocurrents; the standard dissi-
pation arguments are enough. This gives stochastic equations for definitemacroscopic
outcomes.

11.8 Dissipation, bistability, and Born’s rule

The development of B&P is mathematical and quantitative, but abstract. But there
is also a qualitative explanation why the discreteness that makes its appearance in
quantum mechanics actually quite natural, explained by environment-induced ran-
domness and the associated environment-induced dissipation. This provides a more
intuitive view of how the thermal interpretation settles this foundational key issue.
(For generalities about environment-induced randomness and dissipation see, for ex-
ample, the first two chapters of Calzetta & Hu [59].)

In general, dissipation in the effective, human time scales dynamics of a set of
relevant variables is a frequent situation even when the fully detailed dynamics is
conservative. This effective dissipation is the reason underlying the possibility of re-
duced, coarse-grained descriptions whenever there is a separation of time scales for
slow and fast processes. Then one can coarse-grain by eliminating the fast modes and
obtain a simpler limiting (effectively time-averaged) description on the slowmanifold,
themanifoldwhere all slowmotion happens (see, for example, Lorenz [176], Roberts
[248]).Whenever the slowmanifold is disconnected,metastable states of the fullman-
ifold decay under uncontrollable (environment-induced) perturbations into states in
one of the connected components of the slow manifold. The components thus label
random events selected by environmental noise.

For example, consider bending a classical, rotationally symmetric rod using a
force in the direction of the axis of the rod. If the force exceeds the threshold, where
the straight rod becomes metastable only, the rod will bend into a random, but def-
inite direction. The randomness arises from the classical Hamiltonian dynamics to-
gether with the tiniest amount of noise causing a deviation from perfect symmetry.
The same analysis can be made for the dynamics of a metastable inverted classical
pendulum.

Similarly, perturbing in an uncontrollable way a classical bistable system arbi-
trarily little from the intermediate metastable state linking the two local minima of
the potential leads to a tiny random move into one of the two potential wells. Even
the slightest amount of dissipated energy fixes the selection of the potential well, and
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more dissipation forces the system after a short relaxation time to be very close to
one of the two minimum position. This is the principle underlying the emergence of
chemical reactions of molecules (recognizable bound states of few atoms) from amul-
tiparticle atomic description in transition state theory (Hänggi et al. [112]).

Papers on optical bistability (for example, Drummond &Walls [74], Steyn-Ross
& Gardiner [278]) show how coarse-grained bistability arises from a quantummodel
by projecting out irrelevant degrees of freedom. Any bistable system obtained as a re-
duced description from a larger unitary system behaves in the same way. Thus, one
expects a few-particle quantum system, coupled to a macroscopic metastable instru-
ment, to behave in the same way when (as is usual) unstable stationary points are
present.

Therefore, within the accuracy of the approximations involved, bistability and
more general multistability, leads together with dissipation to the emergence of ran-
dom discrete events from deterministic dynamics. The timescale of the emergence of
these discrete events is likely to be a small multiple of the decoherence time of the
system; see Schlosshauer [265].

The traditional introductory textbook approach to measurement is based on the
concept of ideal measurements—illustrated with Stern–Gerlach experiments, low-
density double-slit experiments, and the like. These experiments primarily illustrate
an antiquated view ofmeasurement, dating back to the time before 1975, when POVMs
(see Section 11.5) were still unknown. Until then, quantum measurements used to be
described solely in terms of ideal statistical measurements. These constitute a special
case (or for continuummeasurements a special limiting case) of POVMs, where the Pk
form a family of orthogonal projectors, that is, linear operators satisfying

P2k = Pk = P
∗
k , PjPk = 0 for j ̸= k,

to the eigenspaces of a self-adjoint quantity A (or the components of a vector A of
commuting such quantities) with discrete spectrum given by a1, a2, . . . . We may call a
statistical instrument for measuring A in terms of such a POVM a Born instrument,
and the instrument is then said to perform an ideal measurement of A.

Ideal measurements of A have quite strong theoretical properties since under the
stated assumptions, the instrument-based statistical average

f (A) = p1f (a1) + p2f (a2) + ⋅ ⋅ ⋅

agrees for all functions f , defined on the spectrum of A with the model-based value
⟨f (A)⟩. In an idealmeasurement, the relationship between the properties of the instru-
ment and the properties of the system have a purely correlative nature, and the rule
(11.2) defining the probabilities reduces to the discrete form (for example, Drummond
&Walls [74], Steyn-Ross & Gardiner [278]) of Born’s rule. On the other hand, these
strong properties are bought at the price of idealization, since (unlike more general
POVMs) they frequently result in effects incompatible with real measurements.
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As we saw above, bistability explains the appearance of discrete binary events.
Once these are given, they provide an ideal binarymeasurement of the statement asso-
ciatedwith the event—giving on a single event the result 0 or 1 with a large uncertainty
compared with the probability it measures. The weak law of large numbers then im-
plies that the relative frequencies in sufficiently large samples approximate the prob-
ability for a positive event, here given by Born’s rule for ideal binary measurements.

In particular, for P1 = ϕϕ∗, where ϕ has norm 1, and P2 = 1 − P, this covers the
case whether a quantum system in the pure state ψ responds to a test for state ϕ, and
gives Born’s squared probability amplitude formula p = |ϕ∗ψ|2 for the probability of a
positive test result. When interpreted as a measure of beam intensity, this formula is
identical with Malus’ law from 1809 (see Section 8.6).
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12 Particles
Before Maxwell people thought of physical reality – in so far as it represented events in nature –
as material points, whose changes consist only in motions which are subject to total differential
equations. After Maxwell they thought of physical reality as represented by continuous fields, not
mechanically explicable, which are subject to partial differential equations. This change in the con-
ception of reality is themost profound and themost fruitful that physics has experienced since New-
ton; but it must also be granted that the complete realisation of the programme implied in this idea
has not by any means been carried out yet. […] The last and most successful creation of theoreti-
cal physics, quantum mechanics, differs fundamentally in its principles from the two programmes
which we will briefly designate as Newton’s and Maxwell’s. For the quantities which appear in its
laws lay no claim to describe physical reality itself but only the probabilities for the occurrence of
one of the physical realities to which attention is being directed. […] I am inclined to think that
physicists will not be satisfied in the long run with this kind of indirect description of reality, even
if an adaptation of the theory to the demand of general relativity can be achieved in a satisfactory
way.

Albert Einstein, 1931 [78]

As we have seen in Section 8.4, the basis of our perception of an objective reality is
statistical mechanics and field theory. These are routinely used in equilibrium and
nonequilibrium statistical thermodynamics (see, for example, Calzetta & Hu [59]),
which govern themacroscopic laws of everyday life. Thus the quantum theory of fields
must be the fundamental description of Nature. Therefore, the simpler quantum me-
chanics of particles is necessarily a derived description.

This chapter discusses the extent to which a particle picture of matter and ra-
diation is appropriate. In relativistic quantum field theory, particles appear only as
asymptotic excitations of the fields. The quantum particle concept therefore makes
mathematical (and intuitive) sense only under very special circumstances, namely in
those where a system actually behaves like particles do:
– As quasiparticles, they are useful in the domain, where the geometric optics per-

spective applies.
– Before and after a scattering event in a dilute gas or a particle collider ring, parti-

cles can be considered as being essentially free. During the very short interaction
time itself, the scattering process cannot be described by a particle picture, but
needs a hydromechanical description or a kinetic description via Kadanoff–Baym
equations.

Already at the very beginning of modern quantum mechanics, when Born found his
probability interpretation, the scattering process of single particles in an external clas-
sical field was understood (see Section 14.1 of the Appendix) to be a wave process re-
lating initially and finally stationary particles, freely moving in their center of mass
frame.

https://doi.org/10.1515/9783110667387-012
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It is a historical accident that one continues to use the name particle in the many
microscopic situations, where it is grossly inappropriate to think of it with the clas-
sical meaning of a tiny bullet moving through space. When we restrict the use of the
particle concept to where it is appropriate, or when we do not think of particles as
“objects”, in both cases all mystery is gone, and the foundations become fully ratio-
nal. The inappropriate focus on the particle aspect of quantummechanics created the
appearance of mystery; common sense is restored by focussing instead on the field
aspect.

To substantiate the above summary view, we give in Section 12.1 an analysis of
the photoelectric effect and in Section 12.2 a review of the origin of particle tracks.
This leads in Section 12.3 to a discussion about the reality of particles. In the remain-
der of the chapter, we discuss the relation between fields and particles in more detail.
Section 12.4 poses the problemhow the nonrelativisticmultiparticle description arises
from relativistic quantum field theory. Section 12.5 considers the case of free quantum
fields, and Section 12.6 the case of interacting quantum fields. Section 12.7, the final
section, discusses the semiclassical view of quasiparticles in the approximation fa-
miliar from geometric optics.

12.1 The photoelectric effect

For many purposes the quantization of the electromagnetic field is not necessary at all, and the re-
sponse of the photodetector can be understood even if we continue to picture the field in terms of
classical electromagnetic waves, provided the photoelectrons are treated by quantum mechanics.
The field then simply behaves as an external potential that perturbs the bound electrons of the pho-
tocathode. Such an approach to the problem is sometimes known as semiclassical […] Of course,
it has certain limitations, and if pushed too far the semiclassical treatment will reveal some inter-
nal contradictions. However, that does not detract from its usefulness in many circumstances. As
we shall see, for those electromagnetic fields for which an adequate classical description exists,
the semiclassical and the fully quantized treatments of the photodetection problem yield virtually
identical answers.

Leonard Mandel and Emil Wolf, 1995 [178, p. 439]

In quantum optics experiments, both sources and beams are extended macroscopic
objects describable by quantum field theory and statistical mechanics, and hence
have (according to the thermal interpretation) associated nearly classical observ-
ables—densities, intensities, correlation functions—computable from quantum phys-
ics in terms of q-expectations.

An instructive example is the photoelectric effect, the measurement of a classi-
cal free electromagnetic field bymeans of a photomultiplier. Faint coherent laser light
falling on a photosensitive plate causes randomly placed detection events following
a Poisson distribution. Conventionally, this effect is ascribed to the particle nature of
light, and each detection event is taken as a proof that a photon arrived. Upon closer
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analysis, however, the detection events are found to be artifacts caused by the quan-
tumnature of the photosensitive plate. Thismust be the case because the analysis can
bedone in amodel of the process, inwhichnophotons exist. Such ananalysiswasfirst
done in 1926 byWentzel [298] and is discussed in modern textbooks, for example, in
Sections 9.1–9.5 of Mandel &Wolf [178], a standard reference for quantum optics.

Classical input to a quantum system is conventionally represented in the Hamil-
tonian of the quantum system by an interaction term containing the classical source
as an external field or potential. In the semiclassical analysis of the photoelectric ef-
fect, the detector is modeled as a many-electron quantum system, whereas the inci-
dent light triggering the detector is modeled as an external electromagnetic field. The
result of the analysis is that if the classical field consists of electromagnetic waves
(light), with a frequency exceeding some threshold, then the detector emits a random
stream of photoelectrons with a rate that, for not too strong light, is proportional to
the intensity of the incident light. The predictions are quantitatively correct for nor-
mal light. The response of the detector to the light is statistical, and only the rate (a
short time mean) with which the electrons are emitted bears a quantitative relation
with the intensity. Thus, the emitted photoelectrons form a statistical measurement
of the intensity of the incident light.

In the model, the electron field of the detector responds to a classical external
electromagnetic radiation field by emitting electrons according to Poisson-law proba-
bilities. Therefore, the quantumdetector produces discrete Poisson-distributed clicks,
although the source is completely continuous. The state space of this quantum sys-
tem consists of multielectron states only. Thus, the multielectron system (followed
by a macroscopic decoherence process that leads to the multiple localization of the
emitted electron field) is responsible for the creation of the discrete detection pat-
tern.1

The results of this analysis are somewhat surprising: Although the semiclassical
model used to derive the quantitatively correct predictions does not involve photons at
all, the discrete nature of the electron emissions implies that a photodetector responds
to classical light as if it were composed of randomly arriving photons! (The latter was
the basis for the original explanation of the photoeffect, for which Einstein received
the Nobel prize.)

Though only an approximation to the quantum electromagnetic field, the classi-
cal external field discussed so far shows that the discrete response of a photodetector
cannot be due to its interactions with particles, or more generally not to the quan-
tum nature of the detected object. The discrete response is due to the detector itself,

1 This was already clearly expressed in 1924 by Jeans [147], who writes on pp. 80: “The fundamental
law of quantum-dynamics, that radiant energy is emitted and absorbed only in complete quanta, is
no longer interpreted as meaning that the ether can carry radiant energy only in complete quanta, but
that matter can deliver or absorb radiant energy only by complete quanta.”
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and triggered by the interaction with a field. A field mediating the interaction must
be present with sufficient intensity to transmit the energy necessary for the detection
events.

Both a classical and a quantum field produce such a response. Quantum electro-
dynamics is of course needed to explain special quantum effects of light revealed in
modern experiments, but not for the photoelectric effect. Indeed, finer analysis reveals
that beams in nonclassical states may give a counting statistics significantly differ-
ent from that of the classical analysis. But this only shows that the beam description
needs quantum field theory (where people conventionally use the language of pho-
tons), not that there must be actual particles called photons. Only the quantitative
details change in the case of quantum fields, but nothing depends on the presence or
absence of “photons”.

The present analysis constitutes a proof that detection events happen in the de-
tector without photons being present. Hence, one cannot tell from a detection event
whether the cause was a photon or a classical field. But if the detectors cannot even
distinguish in the theoretical analysis an external classical field from an impinging
photon, based on which analysis should an experimentor decide?

The only sensible conclusion is that photons are figurative properties of quantum
fieldsmanifesting themselves only in the detectors. Before detection, there are nopho-
tons; one just has beams of light in an entangled state. The beams are far more real
than the photons that they are supposed to contain. This is consistent with Stokes’
classical view of the qubit discussed in Section 8.6.

This shows the importance of differentiating between prepared states of the sys-
tem (here beams of classical or quantum light) andmeasured events in the instrument
(here the amplified emitted electrons). The measurement results are primarily a prop-
erty of the instrument, and their interpretation as a property of the system measured
needs theoretical analysis to be conclusive.

12.2 Particle tracks
In the theory of radioactive disintegration, as presented by Gamow, the α-particle is represented
by a spherical wave which slowly leaks out of the nucleus. On the other hand, the α-particle, once
emerged, has particle-like properties, the most striking being the ray tracks that it forms in aWilson
cloud chamber. It is a little difficult to picture how it is that an outgoing spherical wave can produce
a straight track […] no mention should be made of the α-ray being a particle at all.

Nevill Mott, 1929 [187, p. 79]

The number of cracks produced by a projectile hitting a glass sheet provides information on the
impactor’s speed and the properties of the sheet. […] A projectile traveling at 22.2 meters per sec-
ond generates four cracks in a 1-millimeter-thick sheet of Plexiglas. […] A 56.7 meter-per-second
projectile generates eight radial cracks in the same thickness Plexiglass sheet as above.

Michael Schirber, 2013 [262]
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Itmay seem that the reality of individualmassiveparticles is establishedbeyonddoubt
through the observation of particle tracks in bubble chambers and other path-tracking
devices. But are the observed “tracks” guaranteed to be traces of particles?

The paper by Schirber [262] discusses essentially the same phenomenon in a
fully classical context, where a bullet is fired into a sheet of glass and produces a large
number of radial cracks in randomdirections, shown in the first figure there. (See also
Falcao & Parisio [84] and Vandenberghe & Villermaux [288].)

In this case, the discrete, randomdetection events (the cracks) are amanifestation
of broken symmetry when something impacts a material that—unlike water—cannot
respond in a radially symmetric way. Randomness is inevitable in the breaking of a ra-
dial symmetry into discrete events. The projectile creates an outgoing spherical stress
wave in the plexiglas and produces straight cracks. In fact, once initiated, the growth
of a crack in a solid is not very different from the growth of a track in a bubble cham-
ber, except that the energies and time scales are quite different. Only the initiation is
random.

Would observed tracks in a high-energy collision experiment provewithout doubt
the existence of particles, one would have to conclude that the projectile contains
“crack particles”, whose number is a function of the energy of the projectile—just as
the number of photons in a laser beam is a function of its energy, and the number of
events produced by a laser beam hitting a photodetector provides information on the
impactor’s brightness. Only the details are different.

Therefore the number of discrete detection events cannot be regarded as obvious
evidence for the existence of the same number of associated invisible objects. They
are at best evidence of the impact of something.

It is strange that in the classical experimentwith the bullet, we see broken symme-
try due tomicroscopic uncertainty, whereas quantum tradition claims that in a bubble
chamber we see irreducible quantum randomness.

How do we know whether the tracks in a bubble chamber do not have a simi-
lar origin as the classical cracks? In both cases, something impinging on the detec-
tor produces a collection of traces. Though the details are different, the fundamental
mechanism appears to be the same. In both cases, there is a complicatedmacroscopic
process that breaks the symmetry and produces tracklike events. Thus, there is no a
priori reason why in one case, but not the other, the lines should be interpreted as
evidence of particles.

Tracks in a bubble chamber are also a manifestation of broken symmetry when a
radially symmetric α particle field produced by a radioactive nucleus impacts a bubble
chamber. A famous paper by Mott [187] (see also Figari & Teta [87, 66]) explains in
detail how in a bubble chamber complete particle tracks appear in randomdirections,
because of the discrete quantum nature of the bubble chamber—nowhere is made use
of the particle nature of the impacting radialwave! Thus,whereas the details are quan-
tum mechanical, the underlying principle is classical!
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What we see in a bubble chamber are droplets condensing due to ionization
caused by a local piece of a spherical wave emanating from a radioactive nucleus.
Mott analyzes the impact of the spherical wave and proceeds without reference to
anything outside the quantum formalism. He shows (pp. 80) that, in the absence of a
deflectingmagnetic field, the atoms cannot both be ionized, unless they lie in a nearly
straight line with the radioactive nucleus. Mott needs Born’s rule only for interpreting
the final outcome in terms of probabilities and finds it consistent with a distribution
of straight path only. This fully explains the tracks, without making any claims about
position measurements or particle pointer states or collapse assumptions. There is no
direct reference to the α particle causing the ionizations.

Mott’s analysis suggests that after the collision, the scattered part forms a spher-
ical wave (and not particles flying in different directions) until the wave reaches the
detector. The spherical wave is nowhere replaced by flying particles. This makes his
analysis very close to a field theoretical treatment. Particles appear to be ghostlike,
and only macroscopic (hence field-like) things are observed.

12.3 How real are particles?

Von solchem Licht aber genügt ein einziges Lichtquant, um das Elektron völlig aus seiner ’Bahn’ zu
werfen (weshalb von einer solchen Bahn immer nur ein einziger Raumpunkt definiert werden kann),
das Wort ’Bahn’ hat hier also keinen vernünftigen Sinn. […] Die ’Bahn’ entsteht erst dadurch, daß
wir sie beobachten.”

Werner Heisenberg, 1927 [117, p. 176, p. 185]

[…] regard the state operator ρ as the fundamental description of the state generated by the thermal
emission process, which yields a population of systems each of which is a single electron.

Leslie Ballentine, 1998 [22, p. 240]

Everything said in the previous two sections supports the view that, except during
the detection event, particles are unreal in the sense of having no associated objective
properties, and that they have a shade of reality only as identical realizations of a
population.

This conclusion that particles are unreal and havemeaning only duringmeasure-
ment or figuratively as part of a population is also reflected in the statistical interpre-
tation of quantum mechanics championed by Ballentine [23, Chapter 9], who de-
nies that a single system has a state, and instead assigns the state to a population of
similarly prepared systems. By assigning objective properties to the preparation pro-
cedure, to the beam, but not to the electrons, he effectively declares beams, but not
electrons, as real.

Thus, in Ballentine’s view,what really exists are the beams and the discrete effects
they produce when subjected to measurement. But expressed in this way, this is an
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intuitive picture completely orthogonal to the traditional interpretations of quantum
mechanics.

Our conclusion is also reflected in the Copenhagen interpretation of quantum
mechanics, which says that an unmeasured photon has no path, hence (in terms of
objective properties) is unreal. This view that here the word ‘path’ has no definable
meaning, that the ‘path’ comes into being only whenwe observe it, was introduced by
Heisenberg [117].

In quantum gravity, the particle concept even becomes observer-dependent, due
to the Unruh effect.

Even before the advent of quantummechanics, it turned out that, in classical sta-
tistical mechanics, atoms are indistinguishable not only due to practical limitations,
but in principle, and that there is no theoretically conceivableway to distinguish them
as individuals—if it were possible, the resulting predictions would have an additional
entropy of mixing, which is in conflict with the observed thermodynamical properties
of bulk systems. This means that there are fundamental constraints that forbid the
atoms in a classical multiparticle system to have individual properties. Thus, in a clas-
sical multiparticle system, the atoms are anonymous objects without an identity, and
asdiscussed inSection 3.2, expectations—averages over all indistinguishable particles
of eachkind—are theonly classical observables. This situationpersists in thequantum
case, where atoms and elementary particles are in principle2 indistinguishable, too.

Thus, the atoms and elementary particles in a multiparticle quantum system are
also anonymous objects without an identity. This is reflected in the fact that on the
physical Hilbert space of correctly symmetrized wave functions, no particle position
operator is definable; particle positions are spurious objects. The definable operators
are cumulative N-particle operators. When expressed in terms of the second quanti-
zation formalism, these become linear combinations of quantum field operators and
their products. On the level of fields, indistinguishability is obvious: A field with two
indistinguishable local excitations near x and y is the same as a field with the two lo-
cal excitations near y and x. Thus, the q-expectations of quantum field operators are
the natural generalizations of the classical observables.

Finally, the black body spectrum, whose determination by Planck [238] began
the era of quantum physics and was the motivation for Einstein [77] to develop the
notion of a light particle. However, the black body spectrumwas explained in 1924 by
Bose [48] through the canonical ensemble of what is now called a Bose–Einstein gas.
For the equilibrium thermodynamics of a Bose-Einstein gas one today only need the

2 Exceptions are cases, where the range of some quantity identifies a unique particle. (This is analo-
gous to the identifiability of outliers in anonymous statistical data.) Examples include a single atom
prepared in an ion trap, single atoms on the surface of some othermaterial, the atom closest to a given
lattice position in a piece of metal, or, in the Hartree-Fock approximation, the outermost electron of
an atom. In this case, the identification can be made by expectations of quantities containing a char-
acteristic function of the defining property as a factor.
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maximum entropy state corresponding to the q-expectation of a Hamiltonian of the
uncoupled harmonic oscillators of a free field, with their discrete eigenvalues. In the
derivation, only macroscopic q-expectations are involved; no reference to particles is
needed.

Wemay conclude from our discussion that the lack of reality of quantumparticles
is well supported by the literature, in many different ways. Turning the suggestions
obtained into definite statements of the thermal interpretation, we may summarize
our findings as follows:
– Quantum fields (beams, et cetera) are real and have associated objective proper-

ties, given by q-expectation values.
– Quantumparticles (photons, α particles, et cetera) do not exist, exceptwhenmea-

sured. They are detection events created by the detector and mediated by fields.
– On the other hand, a semiclassical picture of particles often works from a phe-

nomenological point of view. How this comes about in an approximate way is the
theme of the remainder of this chapter.

12.4 Particles from quantum fields
If QFT is about fields, how can its restriction to nonrelativistic phenomena be about particles?

Art Hobson, 2013 [134, p. 212]

In physics practice, it is often unavoidable to switch between representations fea-
turing different levels of detail. The fundamental theory of elementary particles and
fields,with themost detaileddescription, is quantumfield theory. Since quantumfield
theory is fundamental, the simpler quantum mechanics of particles is necessarily a
derived description.

How to obtain the quantum mechanics of particles from relativistic interacting
quantum field theory is a nontrivial problem. The traditional textbook description in
terms of scattering and associated propagators does not give a description at finite
times. On the other hand, books on molecular quantum electrodynamics such as Liu
[175] or Salam [257], which need to work with a finite time dynamics, make heuristic
approximations and do not really derive the particle picture from QED.

In the fundamental reality, represented by objective properties of quantum field
theory, expressed at finite times in hydrodynamic terms, fields concentrated in fairly
narrow regions move along uncertain flow lines determined by effective field equa-
tions.

In the particle description, these fields are somehow replaced by a quantum me-
chanical model of moving particles. The uncertainty is now accounted for by the un-
certain value of the position q(t) of each particle together with its uncertainty σq(t),
at any time t, providing not a continuous trajectory, but a fuzzy world tube defining
their location. The momentum of the quantum particles is also uncertain. For exam-
ple, themomentum vector of a particle at CERN ismeasured by collecting information
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from many responding wires and applying curve fitting techniques to get an approx-
imate curve of positions at all times, and inferring from its derivative an uncertain
momentum. Similar techniques are used for particle tracks on photographic plates or
in bubble chambers.

How one finds from a relativistic quantum field description of a beam a corre-
sponding quantum mechanical particle description has hardly received attention so
far. Whereas informally, particles are considered to be elementary excitations of the
quantum fields, this can be given an exact meaning only for free field theories. In in-
teracting relativistic quantum fields, the notion is, at finite times, approximate only.

That the approximation problem is nontrivial can be seen from the fact that in
quantum field theory, position is a certain parameter, whereas in the quantum me-
chanics of particles, position is an uncertain quantity. Thus, in the approximation
process, position loses its parameter status and becomes uncertain. How, precisely,
is unknown.

12.5 Fock space and particle description

A precise correspondence between particles and fields is possible only in free quan-
tum field theories. These are described by distribution-valued operators on a Fock
space. The latter is completely determined by its 1-particle sector, the single particle
space.

Poincaré invariance, locality, and the uniqueness of the vacuum state imply that
the single particle space of a free quantum field theory furnishes a causal unitary irre-
ducible representation of the Poincaré group. These representations were classified in
1939 by Wigner [304]. This is why particle theorists say that elementary particles are
causal unitary irreducible representations of the Poincaré group. Thus, elementary
particles are something exceedingly abstract, not tiny, fuzzy quantum balls!

For spin ≤ 1, these representations happen to roughly match the solution space
of certain wave equations for a single relativistic particle in the conventional sense of
quantummechanics, but only if one discards the contributions of all negative energy
states of the latter. In relativistic quantum field theory, the latter reappear as states
for antiparticles—a different kind of particles with different properties. This already
shows that there is something very unnatural about the relativistic particle picture on
the quantum-mechanical single-particle level.

In general, a field description on the particle level in terms of a conventional mul-
tiparticle structure is necessarily based on a Fock space representation with a num-
ber operator N with spectrum consisting precisely of the nonnegative integers. The
eigenspace for the eigenvalue 1 ofN thendefines the bare single-particleHilbert space.
In the relativistic case, the resulting description is one in terms of bare, unphysical
particles.
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Untangling the S-matrix using bare perturbation theory replaces the real-time dy-
namics of the quantum fields by a nontemporal infinite sum of contributions of mul-
tivariate integrals, depicted in shorthand by Feynman diagrams showing a web of vir-
tual particles. The Feynman diagrams provide a pictorial representation of the formal-
ism of bare perturbation theory. Free real particles show as external lines, whereas
the interaction is represented in terms of internal lines, figuratively called virtual par-
ticles. Most of the resulting integrals (all except the tree diagrams) are infinite and
physically meaningless. A renormalization process turns the sum of all diagramswith
a fixed number of loops (where the infinities cancel) into finite numbers, whose sum
over not too high orders (the series is asymptotic only) has an (approximate) physical
meaning. But in the renormalization process the intuitive connection of the lines de-
picted in Feynman diagrams—the alleged world lines of virtual particles, in the popu-
lar myth (see Neumaier [199])—gets completely lost. Nothing resembles anything like
a process in time; described by the theory and the computations is only a black box
probabilistic model of the in-out behavior of multiparticle scattering.

12.6 Physical particles in interacting field theories

All our knowledge concerning the internal properties of atoms is derived from experiments on their
radiation or collision reactions, such that the interpretation of experimental facts ultimately de-
pends on the abstractions of radiation in free space, and free material particles. […]
The use of observations concerning the behaviour of particles in the atom rests on the possibility of
neglecting, during the process of observation, the interaction between the particles, thus regarding
them as free. […]
The wave mechanical solutions can be visualised only in so far as they can be described with the
aid of the concept of free particles. […]
Summarising, it might be said that the concepts of stationary states and individual transition pro-
cesses within their proper field of application possess just as much or as little ‘reality’ as the very
idea of individual particles.

Niels Bohr, 1927 [39, pp. 586–589]

In its mature form, the idea of quantum field theory is that quantum fields are the basic ingredients
of the universe, and particles are just bundles of energy and momentum of the fields.

Steven Weinberg, 1997 [296, p. 2]

Whereas the conventional construction of relativistic quantum field theories starts
with Fock space, a relativistic interacting quantum field itself cannot be described in
terms of a Fock space. The Fock space structure (and hence the particle structure) of
the initial scaffolding is destroyed by the necessary renormalization, since the number
operator cannot be renormalized. Only the asymptotic fields figuring in the S-matrix
reside in a Fock space—for colored quarks, because of confinement, not even in a con-
ventional Fock space with a positive definite inner product, but only in an indefinite
Fock–Krein space.
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As a consequence, the particle concept is only asymptotically valid, under con-
ditions where particles are essentially free. Traditionally, the discussion of particle
issues in relativistic interacting quantumfields is therefore restricted to scattering pro-
cesses involving asymptotical particle states. Only the S-matrix provides meaning to
quantum particles, in an asymptotic sense, describing Born’s rule for scattering pro-
cesses. In the formulation of Section 14.1 of the Appendix: In a scattering experiment
described by the S-matrix S

Pr(ψout|ψin) := |ψ∗outSψin|2
is the conditional probability density that scattering of particles prepared in the in-
state ψin results in particles in the out-state ψout.

Indeed, textbook scattering theory for elementary particles is the only placewhere
Born’s rule is used in quantum field theory. Here the in- and out-states are asymp-
totic eigenstates of total momentum, labelled by amaximal collection of independent
quantum numbers (including particle momenta and spins). An asymptotic quantity
is a q-observable still visible in the limits of time t → ∞ or t → −∞, so that scat-
tering theory says something interesting about it. This is relevant since quantum dy-
namics is very fast, but measurements take time. Measuring times are already very
well approximated by infinity, on the time scale of typical quantum processes. Thus,
only asymptotic quantities have a reasonablywell-defined response. That iswhy infor-
mation about microsystems is always collected via scattering experiments described
by the S-matrix, which connects the asymptotic preparation at time t = −∞ and the
asymptotic measurement at time t = +∞. Particle momenta (like other conserved ad-
ditive quantities) are asymptotic quantities.

In quantum field theory, scattering theory is just the special case of a universe
containing only a tiny number of particles with known momentum at time t = −∞,
whose behavior at time t = +∞ is to be predicted. This caricature of a universe is justi-
fied only when the few-particle system is reasonably well isolated from the remainder
of the universe. In a real experiment, this is a good approximation to a collision exper-
iment when the length and time scale of a collision is tiny compared to the length and
timescale of the surrounding preparation and detection process. Much care is taken
in modern colliders to achieve this to the required degree of accuracy.

12.7 Semiclassical approximation and geometric optics
I still believe in the possibility of giving a model of reality, a theory, that is to say, which shall rep-
resent events themselves and not merely the probability of their occurrence. On the other hand, it
seems to me certain that we have to give up the notion of an absolute localization of the particles
in a theoretical model. This seems to me to be the correct theoretical interpretation of Heisenberg’s
indeterminacy relation. […] Only if this sort of representation of the atomistic structure be obtained
could I regard the quantum problem within the framework of a continuum theory as solved.

Albert Einstein, 1934 [79, p. 169]
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In the preceding, we discussed the precise notion of particles in relativistic quantum
field theory—an asymptotic notion only. Cross-sections for the scattering processes
computed in this way are supposed to be exact (assuming the idealization that the
underlying theory is exact and the computations are done exactly).

However, the particle picture has another very practical use, as an approximate,
semiclassical concept valid whenever the fields are concentrated along a single (pos-
sibly bent) ray and the resolution is coarse enough. When these conditions apply, one
is no longer in the full quantumdomain and can already describe everything semiclas-
sically, that is, classical with small quantum corrections. Thus, the particle concept is
useful when and only when the semiclassical description is already adequate. When-
ever one uses the particle picture beyond scattering theory (and in particular always
when one has to interpret what people using the particle language say), one silently
acknowledges that one works in a semiclassical picture, where a particle description
makes approximate sense, except during collisions.

A particle is a blop of high-field concentrations well-localized in phase space
(that is, in thekinetic approximationof quantumfield theory),with aboundary,whose
width (or the width in transversal directions for amoving particle) is tiny compared to
its diameter.

Thus, field concentrationsmust be such that their (smeared) density peaks at rea-
sonably well-defined locations in phase space. At this point, similar to the regime of
geometric optics for classical electromagnetic fields, these peaks behave like parti-
cles. Therefore, particles are approximately defined as local excitations of a field, and
they have (as wavelets in classical mechanics) an uncertain (not exactly definable)
position. Their (necessarily approximate) position and momentum behaves approx-
imately classically (and gives rise to a classical picture of quantum particles) in the
regime corresponding to geometric optics. When the spatial resolution is such that
the conditions for the applicability of geometric optics hold, particles can be used as
an adequate approximate concept.

In a collision experiment, it is valid to say that particles travel on incoming and
outgoing beams in spacetime, whereas they are far apart, since this is a good semi-
classical description of the free particles in a paraxial approximation. But when they
come close, the semiclassical description breaks down and one needs full quantum
field theory to describe what happens.

The exact state of the interacting system is now a complicated state in a renormal-
ized quantum field Hilbert space3 that no one so far was able to characterize; it is only
known (Haag’s theorem) that it cannot be the asymptotic Fock space describing the
noninteracting particles. Since it is not a Fock space, talking about particles during
the interaction makes no longer sense—the quantum fields of which the particles are

3 This Hilbert space is generally nonseparable, a direct sum of the uncountably many Hilbert spaces
corresponding to the different superselection sectors.
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elementary excitations become very nonparticle-like. After the collision products sep-
arate well enough, the semiclassical description becomes feasible again, and one can
talk again about particles traveling along beams.

Thus, whereas the field picture is always valid, the picture of particles traveling
along beams or other world tubes is appropriate except close to the collision of two
world tubes. The behavior there is effectively described in a black box fashion by the
S-matrix. This is a reasonable approximation if the collision speed is high enough, so
that one can take the in- and outgoing particles as being at time −∞ and +∞, and can
ignore what happens at finite times, that is, during the encounter. Thus, in the semi-
classical description, we have between collisions real particles described by asymp-
totic states, whereas the collisions themselves—where the particle picture no longer
makes sense—are described using a black box view featuring the S-matrix. To calcu-
late the S-matrix, one may work in renormalized perturbation theory, using quantum
field theory.

Using the intuition of geometric optics requires a locally free effective description.
In a locally homogeneous background, such an effective description is usually achiev-
able through the introduction of quasiparticles. These are collective field modes that
propagate as if they were free. If the composition of the background changes, the def-
inition of the quasiparticles changes as well.

In particular, the photons in glass or air are quasiparticles conceptually different
from those in vacuum. Similarly, the moving electrons in a metal are quasiparticles
conceptually different from those in vacuum. This shows that photons, electrons, and
other elementary particles have no conceptual identity across interfaces. A photon,
traditionally taken to be emitted by a source, then passing a system of lenses, prisms,
half-silvered mirrors, and other optical equipment, changes its identity each time it
changes its environment!

This is corroborated by the field of electronoptics, where geometric rays are used
to calculate properties of magnetic and electrostatic lenses for electron beams.

Problems abound if one tries to push the analogies beyond the semiclassical do-
main of validity of the particle concept. Already in classical relativistic mechanics,
point trajectories are idealizations, restricted to a treatment of the motion of a single
point in a classical external field. By a result of Currie et al. [63], classical relativistic
multiparticle point trajectories are inconsistent with a Hamiltonian dynamics. Thus,
one should not expect them to exist in quantum physics either. They are appropriate
only as an approximate description.

Note that this semiclassical domain of validity of the particle picture excludes ex-
periments with multilocal fields generated by beam-splitters, half-silvered mirrors,
double slits, diffraction, long-distance entanglement, and the like. It is there where
the attempt to stick to the particle picture leads to all sorts of counterintuitive fea-
tures. But these are caused by the now inadequate particle imagery, not by strange
features of quantum field theory itself.
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13 Some quantum experiments

In this chapter, we look inmore detail at some of the traditional quantum experiments
from the point of view of the thermal interpretation.

An analysis of individual events on a screen leads in Section 13.1 to the picture of
a quantum bucket for measuring a continuous variable with a device capable only of
producing discrete results. The notion of quantum currents from Section 7.4 may be
used to visualize in the thermal interpretation the finite time dynamics of particle de-
cay (Section 13.2) and the Stern–Gerlach experiment (Section 13.3). Another analysis
of the Stern–Gerlach experiment, now in terms of particles, is given in Section 13.4.
The discrepancy between the thermal interpretation and traditional interpretations is
seen to be of order O(ℏ). Finally, in the context of entanglement experiments, we dis-
cuss notions of causality (Section 13.5) andnonlocality (Section 13.6) and their relation
to the thermal interpretation.

13.1 Quantum buckets and time-resolved events on a screen

Consider the quantum system consisting of a screen and an external classical electro-
magnetic field. This is a very good approximation to many experiments, in particu-
lar to those where the light is coherent. According to the standard interpretation, the
analysis (given, for example, in the quantum optics book by Mandel & Wolf [178,
Chapter 9]) of the response of the electrons in the screen to the field gives a Poisson
process for the electron emission, at a rate proportional to the intensity of the inci-
dent field. This is consistent with what is observed when doing the experiment with
coherent light. A local measurement of the parameters of the Poisson process there-
fore provides a measurement of the intensity of the field.

In this analysis, there is nothing probabilistic or discrete about the field; it is just a
term in the Hamiltonian of the system. Thus, according to the standard interpretation,
the probabilistic response is, in this case, solely due to the measurement apparatus—
the screen, the only quantum systemfiguring in the analysis. At very low intensity, the
electron emissions by the screen become visible event by event, and the pattern re-
flecting the incident field intensity emerges gradually. Effectively, the screen exhibits
what is called shot noise: It begins to stutter like a motor when fed with gas at an
insufficient rate. The stuttering of the screen cannot be due to discrete eigenvalues
of an operator representing the intensity—the only operator appearing in the anal-
ysis by Mandel and Wolf is an electron momentum operator coupling to a classical
field.

The classical external field discussed so far is of course only an approximation to
the quantum electromagnetic field, and was only used to show that the discrete re-
sponse is due to the detector, and only triggered by the interaction with a field. A field
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216 | 13 Some quantum experiments

mediating the interaction must be present with sufficient intensity to transmit the en-
ergy necessary for the detection events; these are for coherent quantum light inde-
pendent and Poisson distributed even in a full quantum analysis (given by Mandel &
Wolf [178, Section 12.10]). In the case of noncoherent quantum light, only the quan-
titative details change.

The discrete result appears just because each screen electron makes a very inac-
curate random binary measurement of the incident field intensity. Each single spot in
the gradually appearing interference pattern is measurable to high accuracy, but this
is a high-accuracy measurement of the screen only, not of the field (or its particle con-
tent). The low accuracies refer to accuracies of the implied field intensity—namely one
unit at the responding position and zero units elsewhere, whereas the true intensity
is low, but nonzero everywhere where the high intensity interference pattern would
show up.

Accepting Mandel and Wolf’s detector analysis, nothing depends on the deter-
ministic nature of the thermal interpretation. But the latter explains (see Section 10.4)
why neglecting the environment (here the detector details) results in probabilistic fea-
tures at all, and causes the electrons to exhibit a binary response—remaining bound
or escaping to a macroscopic distance, where the effect can be magnified by a photo-
multiplier.

In the thermal interpretation, one assumesmore generally that a similar stuttering
effect appears whenever one measures any classical or quantum field at very low in-
tensity, nomatter whether a photon field or an electron field or a silver field or a water
field is considered. Such a stuttering effect may be illustrated as follows: We consider
measuring the rate of classical water flow into a basin by the number of buckets (of a
fixed size) per unit time needed to keep the water at a roughly fixed level of height. As
long as there is enough flow, the bucket is very busy and the flow is measured fairly
accurately. But at very low rates, it is enough to occasionally take out one bucket full
of water, and the bucket number is a poor approximation of the flow rate, unless one
takes very long intermittent times.

By the same principle, quantum detectors, such as photocells and Geiger coun-
ters, act as quantum buckets. The sole fact that one has counters already implies
that, whatever they measure, the measurements are forced by construction to be inte-
gers. This limits the attainable resolution of what is measured as in the example of the
3-digit counter from Section 10.7. If used to measure continuous flow, the uncertainty
is always at least 1/2 in the units used for the counting.
13.2 Particle decay

In the thermal interpretation, currents provide the natural description for chemical
reactions, collision processes, and particle decay, using the general picture justified in
Section 11.7: discrete events emerge fromcoarse-graining throughdissipation together
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13.2 Particle decay | 217

with the discrete basin structure of the slow manifold of a physical system. In this
section, we look at how currents may be used to visualize particle decays.

We explain the principle by considering a particle decay A→ B+C, such as π+ →
μ++νμ. Note that at present, this only gives an intuitive picture ofwhat should happen.
The details of this thermal interpretation picture are still conjectural and need to be
justified by future analysis of specific models.

At each time t one has three operator-valued effective 4-currents, one for each
possibly flowing substance A,B,C. When the center of the reaction is at the origin,
the reaction A → B + C proceeds as follows: At large negative times, the A-density
(q-expectation of the time component of the 4-current) is concentrated along thenega-
tive z-axis, and theA-current (q-expectation of the 3-vector of space components of the
4-current) is concentrated along the positive z-axis; the B-current and the C-current
essentially vanish.

If the reaction happened (which depends on the details of the environment) then,
at large positive times, the A-current is negligible, the B-density and C-density are
concentrated along two (slightly diverging) rays emanating from the origin in such
a way that momentum conservation holds, and the B-current and C-current are con-
centrated along these rays, too. Otherwise, at large positive times, the A-density is
concentrated along the positive z-axis, and the A-current is concentrated along the
positive z-axis, too, and the B-current and the C-current remain negligible. During the
reaction time, that is, when the fields are concentrated near the origin, one can inter-
polate the asymptotic happening in an appropriate way. The details are defined by the
interaction.

Themanifold of slowmodes splits into a basin corresponding to the decayed state
(with two continuous angle parameters labeling the possible modes), and a basin cor-
responding to the undecayed state. The metastable transition state at time zero deter-
mines, togetherwith the environmental fluctuations,whichbasin is chosenandwhich
direction is taken. This is comparable to what happens to bending a classical thin iron
bar through longitudinal pressure in a random direction, though in that case, the bar
must bend, so that there is only one basin, with modes labeled by a single angle. In
both cases, one of the continuous labels appears due to the rotational symmetry of
the setting around the z-axis. In the case of the decay reaction, the second continu-
ous label arises through another, infinitesimal symmetry at the saddle point at the
origin.

This is one of the possible scenarios, probably validwhe the decay happens inside
a dense medium (a secondary decay in a bubble chamber, say).

A second scenario applies for a collision experiment in vacuum. Now there is not
enough environmental interaction near zero, and after reaching the collision region,
the B-current and the C-current should, in case a reaction happens, then take a rota-
tionally symmetric shape. In this case, the path-like particle nature appears only later
when the spherical fields reach a detector. The metastability of the detector forces
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218 | 13 Some quantum experiments

the two spherical fields to concentrate along two paths, and momentum conserva-
tionmakes these paths lie weighted-symmetric to the z-axis (geometrically symmetric
when the decay products have equal mass). The details are essentially those reported
in the 1929 paper by Mott [187].

In both scenarios, the detection process creates the seeming particle nature of the
observation record; see the discussion in Section 12.2.

All chemical reactions,nuclear reactions, and other collision processesmay be
treated in a similarwayasparticle decay. For example, theComptoneffect corresponds
to a collision process e + γ  e + γ for an electron and a photon. It is a special case of
the process A + B  A + B, to be modeled by the currents of two beams that meet in
the collision region.

13.3 The Stern–Gerlach experiment in terms of currents

We now consider the Stern–Gerlach experiment, one of the standard textbook exam-
ples used in the context of introducing Born’s rule. Here a silver beam is split by a
magnetic field into two beams. These beams are observed to produce two spots of sil-
ver deposit on a screen.

What can be accurately measured are the positions of the spots in the Stern–
Gerlach experiment. That these spots mean an accurate spin measurement is already
an interpretation—the traditionally accepted one. It is this interpretation that the ther-
mal interpretation calls into question. It replaces it by the claim that it is an inaccurate
measurement of a continuous particle spin with an error of the order of O(ℏ) (as ex-
pected for nonclassical measurements, with the correct classical limit). This error is
magnified by the experimental arrangement to a macroscopic size.

With the thermal interpretation, we may interpret this experiment either on
the level of quantum field theory in terms of currents or by considering individ-
ual silver atoms in the beam. The former is the fundamental level and is treated
in Section 13.3. The latter is approximate but elementary and is treated in Sec-
tion 13.4.

In the traditional analysis of the Stern–Gerlach experiment in terms of single sil-
ver particles, the dynamics is treated semiclassically for simplicity, and two beams
appear as the only possible pathways.

In a field theoretic treatment, the beam is not interpreted classically, but as a
quantum field.1 Thus, the silver is treated as an effective spinor field. It is not a free
field, because of the magnetic field in the experiment. The magnetic field is (in the
usual semiclassical treatment) a term in the Hamiltonian of the field theory that

1 This is the difference to Schrödinger’s failed early attempts to give a continuum interpretation of
quantummechanics in terms of classical fields.
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13.3 The Stern–Gerlach experiment in terms of currents | 219

changes the dynamics. It treats different components of the spinor field representing
silver in opposite ways, turning a single beam at the source into twowhile passing the
magnet.

Section 7.4 applies, except that the electric current is replaced by a silver current
(which means that the formula defining it is a complicated multibody current). To get
the total amount of silver deposited, one also needs to integrate over the time of the
experiment. Thus, the effective support of the silver current operator j(x) is initially
along a single beam, which, upon entering the magnetic field, splits into two beams.
The current flows along the direction of the two beams. The amount of silver on the
screen at the end measures the integrated beam intensity, the total transported mass.
This is in complete analogy to the qubit treated in Section 8.6. Particles need not be
invoked.

The intensity of the silver flow is the function of the position on the screen defined
by the q-expectation of the incident current integrated over a spot centered at this
position. Given the setup, the intensity is positive at the two spots predicted by the
mathematics of the theory, and zero elsewhere.

The density operator is that of the whole universe, and the integration in (7.5) is
effectively over a cell, to which a piece of the equipment responds, done after the trace
computation. The operation Trρj(x) yields a current J that is nonzero only at two small
spots of any cross section (for example, on the screen), and integrating over each spot
gives in the symmetric case a total intensity of half of the original beam (before the ap-
paratus) in each spot. Integrating over other regions of the screen gives zero since the
integrand is zero there. This is why the silver flows into these two spots, and nowhere
else.

Thus, when firing a continuous beam of high intensity one sees two spots, both
appearing at essentially the same time. What is measured by a spot is the intensity of
the silver flow into the spot, not the spin of single electrons.2

In the very low-intensity case, the stuttering effect discussed in Section 13.1 for
the double-slit experiment becomes visible at a screen of sufficiently high resolution,
and the response of the screen becomes erratic. In particular, if a beam contains only
a single particle, the quantum field representing the beam is in a state with sharp
particle numberN = 1, but otherwise nothing changes. Conservation ofmass, together
with the instability of macroscopic superpositions and randomly broken symmetry
forces that only one of the two spots gets marked by a silver atom, just as a classical
bar under vertical pressurewill bend into only one direction. It is not clear howNature
achieves the former, but this lack of explanation is common to all interpretations of
quantum physics.

2 The original Stern–Gerlach paper (and the early discussion about it) indeed talked about “Rich-
tungsquantelung” (quantization of directions) and not of spin measurement. The fact that two beams
appear is a consequence of the spin of the electron field, but has nothing per se to do with measuring
an electronic spin state. The latter is defined only for single electrons, not for the electron field.
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220 | 13 Some quantum experiments

Wemay interpret the stuttering in terms of the quantum bucket picture from Sec-
tion 13.1. We may think of each of the two spots on the screen as a quantum bucket
measuring the impinging silver flow by counting buckets. We combine the counts
into a single pointer variable x by counting left spot events downwards (−1) and right
spot events upwards (+1). Each single atom deposited somewhere on the screen is one
bucket event reducing the intensity of the inflowingbilocal silver field. It approximates
the true value in [−1, 1] (the q-expectation of x) by either +1 or −1, the only possible
bucket results. This holds for every single atom, and hence for all the silver that ar-
rives in the two spots. For simplicity, we assume that the silver source is prepared in
a state, where the q-expectation of x vanishes. Taking the single buckets as measure-
ment then results each time in a binary measurement of the true (theoretically pre-
dicted) uncertain number 0 with uncertainty 1, consistent with a measurement error
of 1 in each case. This is completely independent of the flow rate.

13.4 The Stern–Gerlach experiment in terms of particles
AndemTatbestand, die Elektronenschwärmebetreffend,wie er bisher beschriebenwurde, ist nichts
Paradoxes. Statt vom Schwarm spreche ich in Zukunft vom einzelnen Elektron und demgemäß von
Wahrscheinlichkeit statt von Häufigkeit. Etwas Paradoxes liegt erst in der Aussage, daß σx die Kom-
ponente eines gewissen Vektors, des Impulsmomentes, in bezug auf die x-Richtung ist. Denn dies
involviert doch, wenn wir ein rechtwinkliges Koordinatensystem x y z im Raume einführen und die
willkürliche Richtung r die Richtungskosinus a, b, c hat, die Gleichung

σr = aσx + bσy + cσz .

Wie verträgt sich das mit dem Umstand, daß σr so gut wie σx , σy , σz nur der Werte ±1 fähig ist?
Hermann Weyl, 1927 [300, pp. 8f]

We now consider the Stern–Gerlach experiment not in terms of a field measurement,
but as a spin measurement experiment of single silver atoms in the beam. In this case
one must—like in every introductory text—treat the silver source as producing an en-
semble of single atoms and, ignoring efficiency considerations, assume that each sil-
ver atom produces a tiny dot at one of the two spots on the screen.

By a similar analysis as that in Section 10.4, the thermal interpretationwould find,
looking at the reduced dynamics of the relevantmacroscopic q-expectations, that due
to the reduced dynamics of the pointer variable (here the relative position of the con-
densed silver atom), all but the positions at the two spots are unstable, so that the
total system is bistable. The essence thus happens at the two spots of the screen. Each
silver atom materializes at one of the two spots: It is driven by the interaction with
the screen to a transformation of the metastable superposition state before it reaches
the screen into a stable state of fairly definite position. The dissipative bistability of
the system consisting of a silver atom and the screen effectively acts as discretization
process.
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13.4 The Stern–Gerlach experiment in terms of particles | 221

In general, due to the representation theory of the compact rotation group, the
response of a measurement device to a continuous angular momentum signal, rep-
resented by the q-expectation ⟨J⟩ of the vector-valued angular momentum J of the
measured particle, is an integral multiple of 1

2ℏ, smeared a little3 due to the limited
precision of the measuring device.

For a high-precision measurement, the angular momentum is essentially dis-
cretized to exact multiples of 1

2ℏ, resulting in discretization errors of order O(ℏ). Ac-
cording to the thermal interpretation, this discretization is an effect of the stochastic
dissipativity of the system, consisting of a silver atom and the screen. If we compare
the silver atom to a numerical computation and the screen to a floating-point pro-
cessor, these perturbations are of the same kind as rounding errors in floating-point
computations, where the processor forces all unrepresentable real numbers into a
representation by one of the two closest machine numbers.

For general angular momentum,O(ℏ) is a tiny amount.4 But for microscopic mea-
surements at lowquantumnumbers, these systematic perturbations appear tobe large
in relative terms.

In particular, the Stern–Gerlach experiment is usually depicted as amodel for ob-
serving the intrinsic angularmomentumof silver atoms. In this case, this perturbation
is of the sameorder as the size of each component of ⟨J⟩, which is bounded itself by 1

2ℏ.
Since any number of order O(ℏ) is an O(ℏ) perturbation of any other number of order
O(ℏ), no significant difference between the convention of the thermal interpretation
and tradition is visible. But since the measurements are at noise level of the stochas-
tic process observed, relative differences of more than 100 percent may appear.

This becomes conspicuous when we change the scale and consider microscopic
units. Ignoring the factor of 12ℏ, we represent the spinmeasurement as ameasurement
of the q-expectations ⟨σ3⟩ ∈ [−1, 1] by means of a binary measurement of the spot on
which an arriving silver atom is located, with possible values left spot (−1) or right
spot (+1). In the thermal interpretation, each single dot on the screen, at either the
left spot (−1) or the right spot (+1), is viewed as an approximate measurement of the
q-expectation, which lies somewhere in [−1, 1]. This approximation is very poor. For

3 In the past, this experiment (and others) could be used for precision measurements of ℏ. But from
May 20, 2019 onwards, ℏ has—by convention—a fixed (but irrational) value, as part of the 2019 redefi-
nition of SI base units [57]. From then on, one can get (by calibration) exactmultiples of 12ℏ, as claimed
in Born’s rule. However, the thermal interpretation asserts that, since themeasurement results are not
reproducible, this seeming exactness of the angular momentummeasurement is a spurious artifact of
measuring it with a quantum bucket.
4 In many cases, classical descriptions can be obtained as limiting cases when Planck’s constant ℏ
can be set to zero without significant loss of quality of the resulting models. The measurement er-
rors due to the discreteness of spectra (energy level spacings, angular momentum level spacings) are
O(ℏ) and vanish in the classical limit.When relevant level spacings become large (photochemistry) ex-
cited states behave like different species of particles undergoing something akin to a chemical reaction
when a transition happens.

Brought to you by | Stockholm University Library
Authenticated

Download Date | 10/28/19 11:07 AM



222 | 13 Some quantum experiments

example, when the initial state of the silver atoms is such that its q-expectation is⟨σ3⟩ = 0, the error of both binary measurement results ±1 is 1, but with random signs,
consistent with the computed uncertainty, which is also 1.

To improve the accuracy one needs to average over multiple measurements, and
gets better results that converge to the true value 0 as the sample size gets arbitrarily
large. To see this, one must consider a different operator, namely the mean spin s =
N−1(s1 + ⋅ ⋅ ⋅ + sN ), where sk is the σ3 of the kth silver atom in the ensemble measured.
This mean spin operator has an associated (theoretically predicted) uncertain value
of s ± σs = 0 ± N−1/2, which is approximately measured by the mean of the bucket
results. Thismean is for largeN distributed as aGaussianwith zeromeanand standard
deviation N−1/2, matching the prediction.

Born’s statistical interpretation treats the measured position of each individual
silver atom instead as an exact measurement of the discrete value ±1 of the corre-
sponding atom, with random signs. Although each single measurement is deemed
error-free, the statistical uncertainty resulting from this randomness is still 1.

Clearly, both interpretations account for the same experimental facts, but in dif-
ferent ways. They make very different assumptions concerning the nature of what is
to be regarded as the idealized measurement result, to which the actual result is to be
compared.

13.5 Relativistic causality
Phrases often found in the physical literature as ‘disturbance of phenomena by observation’ or ‘cre-
ation of physical attributes of objects by measurements’ represent a use of words like ‘phenomena’
and ‘observation’ as well as ‘attribute’ and ‘measurement’ which is hardly compatible with common
usage and practical definition and, therefore, is apt to cause confusion. As a more appropriate way
of expression, one may strongly advocate limitation of the use of the word phenomenon to refer ex-
clusively to observations obtained under specified circumstances, including an account of thewhole
experiment.

Niels Bohr, 1948 [40]

In each experiment, irrespective of its history, there is only one quantum system, which may consist
of several particles or other subsystems, created or annihilated at the various interventions.

Asher Peres and Daniel Terno, 2002 [235, p. 98]

We now consider relativistic causality in a Minkowski spacetime. By working with
charts, everything said generalizes to the case of curved spacetime. Quantized space-
time is not discussed, since there is no accepted framework for it.

A point object has, at any given time in any observer’s frame, properties only at a
single point, namely the point in the intersection of itsworld line and the spacelike hy-
perplane orthogonal to the observer’s 4-momentumat the time (in the observer frame)
under discussion. An extended object has properties that depend on more than one
spacelike-separated spacetime position. A joint property is a property that explicitly
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depends on more than one spacetime location within the spacetime region swept out
by the extended object in the course of time.

Note that, from a fundamental point of view, there is no clear demarcation line
that would tell when a system of particles (for example, a molecule, or a solar system)
should or should not be regarded as a single object. The thermal interpretation, there-
fore, treats arbitrary subsystems of a large system as a single object if they behave in
some respect like a unity.

We may distinguish three Poincaré invariant definitions of causality.
– Point causality: Properties of a point object depend only on its closed past cones,

and can influence only its closed future cones. This is used in special relativity,
which discusses the motion of a single classical particle in a classical external
field.

– Separable causality: Joint properties of an extended object consist of the combi-
nation of properties of their constituent points. This is intuitively assumed in all
discussions of Bell-type nonlocality, and is in conflict with experiments involving
highly entangled photons.

– Extended causality: Joint properties of an extended object depend only on the
union of the closed past cones of their constituent parts, and can influence only
the union of the closed future cones of their constituent parts. This is the version
that can probably be derived from relativistic quantum field theory, where parti-
cles are localized excitations of the quantum field, and hence extended objects.

All three notions of causality agree on the causality properties of point objects (“point
causality”) but differ on the causality properties of extended objects. If one regards an
entangled quantum system as a system of point particles, one runs into lots of coun-
terintuitive conceptual problems. If one regards an entangled quantum system as a
single extended system in the above sense, all such difficulties disappear.

Extended causality is the form of causality appropriate for the thermal inter-
pretation. It takes into account what was known almost from the outset of modern
quantum physics: quantum objects are intrinsically extended and must be treated as
whole.

The extended system view gives the appropriate intuition. The violation of Bell in-
equalities in experiments, such as those by Aspect [17] (see Section 13.6 below) shows
that neither point causality nor separable causality can be realized in Nature. But ex-
tended causality is not ruled out by current experiments. Eberhard & Ross [75] gives
a proof of causality from relativistic quantum field theory, in the sense that no faster
than light communication is possible.

13.6 Nonlocal correlations and conditional information
In this section, we briefly discuss some experimental aspects of nonlocality from the
point of view of the thermal interpretation.
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Experiments that prove that Bell inequalities are violated imply, together with
Bell’s theorem, that reality modeled by deterministic process variables is intrinsically
nonlocal. The thermal interpretation is based on the deterministic Ehrenfest dynamics
of the collection of all q-expectations of the universe. It couples local q-expectations
(currents, for example, beam densities and velocities, and field values, for example,
idealized pointer readings) to multilocal q-expectations (n-point functions), and ac-
counts in this way for the nonclassical correlations observed in long-distance entan-
glement, in agreement with Bell’s theorem.

A subsystem of a composite system is selected by picking a vector space of
quantities (linear operators) relevant to the subsystem. The existence of multilocal
q-expectations implies that a composite system is more than its parts. Regarding a
tensor product of two systems as two separate subsystems (as often done informally)
is appropriate only5 when all quantities that correlate the two systems are deemed
irrelevant.

According to the thermal interpretation, all quantum objects have an uncertain,
not sharply definable position. Hence they are intrinsically nonlocal, but usually only
slightly. However, two subsystems prepared such that long-distance entanglement is
present, must be treated as a whole since their preparation leads to significant multi-
locality. These composite systems are then very extended even when they are concen-
trated along two narrow beams.

Consider the example of an entangled 2-photon state. In quantum physics, there
is a definite concept of a system in a 2-photon state, but only a fuzzy one of “two pho-
tons”. Attempting to literally interpret an entangled 2-photon state as consisting of
two separate photons and nothing more leads to well-known seemingly paradoxical
situations. The correct picture is to consider the system as an extended whole!

Given the quantum mechanical 2-photon system together with the Schrödinger
dynamics determined by the associated dispersion relation, Born’s rule makes asser-
tions about measurements anywhere in the universe at any future time! Something
more nonlocal cannot be conceived. It is, therefore, no surprise that intuition is vio-
lated. However, the thermal interpretation renounces the universal validity of Born’s
rule. Instead, the nonlocal correlations get their natural explanation in terms of ex-
tended causality and conditional information.

Consider the conceptual setting of a typical Bell-type experiment, where entan-
gled 2-photon systems are subjected to measurements by two far away observers con-
ventionally called Alice and Bob, at times and positions corresponding to spacelike
distances. Their measurement results are later compared by another observer called
Charles, say.

In an experiment checking Bell inequalities, an object in the form of a 2-photon
system may be prepared at the source by parametric down-conversion, propagating

5 If this is not the case, thinking of the composite system only in terms of its subsystems produces the
weird features visible in many discussions of quantum entanglement aimed at the general public.
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freely in two opposite directions. Whatever Alice and Bob measure far away depends
on the whole 2-photon system. According to the thermal interpretation, the object de-
scribed by this 2-photon system is an extended object. Over long distances, the un-
certainty intrinsic to the 2-photon system becomes huge. The object becomes vastly
extended—so nonlocal that the assumptions in Bell’s argument are obviously vio-
lated. It is not surprising that the conclusions can be violated, too.

Any meaningful use of the notion of causality depends on a notion of before and
after,which does not exist in the case of correlations at spacelike distances. Because of
the Lorentz invariance of all relativistic arguments, one cannot say that Alice’s actions
andobservations cause (or affect) Bob’s observations to be correlated once—asusually
assumed—Alice’s and Bob’s position are causally unrelated. For in this case, there are
always Lorentz frames, in which Alice acts later than Bob observes, and others, in
which Bob acts later than Alice. So neither can be said to cause (or affect) the other
observer (see Peres & Terno [235, 236]). Whatever statistics can be made (by Bob or
Charles) from data collected by Bob before Alice’s choices or results become available
to Charles—it will be completely unaffected by the behavior of Alice and her detector.

But something else from Alice becomes known to Bob faster than light, condi-
tional information. Conditional information is information deduced from what—
given past and present observations available to a local observer—is known from the-
ory, but is not observed itself by this observer. Additional observationsmaymake con-
ditional information more precise. But as long as part of the data in the condition is
not yet known, nothing conclusive is known. Having about tomorrow’s weather the
conditional information that “Should there be no clouds it will not rain” tells, in fact,
nothing useful about theweather tomorrow, unless we have information about tomor-
row’s clouds.

Similarly, Bob gets conditional information of the kind: “Should Alice have mea-
sured X then her result was Y”. Because Bob does not know whether the hypothesis
holds, he knows nothing useful. Bob’s claimed knowledge about the results of Alice’s
measurement is sound only if Alice actually measured something. If she instead took
a nap, or if her detector failed because of a power outage, Bob concluded something
wrongly.

Causality only demands that information flow is limited by the speed of light.
Nothing in relativity forbids conditional information to be passed faster than light. For
example, we know lots of conditional information about what can or cannot happen
inside black holes although no information can flow out from there. Such conditional
information is obtained from theory independent of observation. But theoretical con-
clusions apply instantaneously and have no speed limit.

In Bell-type experiments, the conditional information and the correlations be-
come actual only when someone (like Charles) has access to the actual data resolving
the condition.

But how is it possible that, as in actual long-distance entanglement experiments
performed, when Charles checks the findings he finds Alice’s conditional informa-
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226 | 13 Some quantum experiments

tion unconditionally satisfied? It is easily seen that extended causality is observed.
Thus there is no logical consistency problemwith special relativity. We can even say a
little more: When preparing actual long-distance entanglement experiments, the ex-
perimenters have to make sure that nothing will interrupt the expected flow of events
needed for a correct experimental performance. This means that they in fact prepare
not only the source of the entangled photon pairs, but also Alice’s and Bob’s environ-
ment and the whole environment the photons traverse during the experiment. This
preparationmust be careful enough to exclude all events thatwould causeunexpected
changes to the intendedprotocol, or remove thedelicate entanglement. But thismeans
that the preparation deposits in the past light cones of both Alice and Bob enough cor-
related classical information that influences the present of Alice and Bob when they
perform their choices. This casts some doubt on the experimental validity of the strin-
gent locality assumptions made in derivations of Bell-type inequalities.
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14 A critique of Born’s rule
Traditionally, some version of Born’s rule is always considered to be an indispensable
part of any interpretation of quantum mechanics, either as a postulate, or as a result
derived—not always on the basis of convincing reasoning—from other postulates. In
this section, we have a close look at the possible forms of Born’s rule and discuss the
limits of its validity.

All traditional foundations of quantummechanics heavily depend on the concept
of (hypothetical, idealized) experiments—far too heavily. This is one of the reasons
why these foundations are still unsettled, over 90 years after the discovery of the basic
equations for modern quantum mechanics. No other theory has such controversial
foundations.

The main reason is that the starting point of the usual interpretations is an ide-
alization of the measurement process that is taken too seriously, namely as the in-
disputable truth about everything measured. But in reality, this idealization is only a
didactical trick for the newcomer to make the formal definitions of quantummechan-
ics a bit easier to swallow. Except in a few very simple cases, it is too far removed from
experimental practice to tell much about real measurements, and hence about how
quantum physics is used in real applications.

In experimental physics, measurement is a very complex thing, far more complex
than Born’s rule (the usual starting point) suggests. To measure the distance between
two galaxies, the mass of the top quark, or the Lamb shift, just to mention three basic
examples, cannot be captured by the idealistic measurement concept used there, nor
by any of the refinements of it discussed in the literature.

In each of the three casesmentioned, one assembles a lot of auxiliary information
and ultimately calculates themeasurement result froma best fit of amodel to the data.
Clearly, the theory must already be in place in order to do that. We do not even know
what a top quark should be, whose mass we are measuring, unless we have a theory
that tells us this!

The two most accurately determined observables in the history of quantum
physics, namely the anomalous magnetic moment of the electron and Lamb shift,
are not even q-observables!

To present the stage for the criticism of Born’s rule in Section 14.3, we first need to
clarify themeaningof the term“Born’s rule”. Todistinguishdifferent usefulmeanings,
we look in Sections 14.1–14.2 at the early history of Born’s rule.

https://doi.org/10.1515/9783110667387-014
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230 | 14 A critique of Born’s rule

14.1 Early, measurement-free formulations of Born’s rule

It is interesting to consider the genesis of Born’s rule,1 based on the early papers of
the pioneers of quantummechanics. This and the next section benefited considerably
from discussions with Francois Ziegler, though his view of the history is somewhat
different (see Ziegler [317]).

The two 1926 papers by Born [43, 44] (the first being a summary of the second) in-
troduced the probabilistic interpretation that earned Born the 1954Nobel prize. Born’s
1926 formulation2 “gives the probability for the electron, arriving from the z-direction, to
be thrownout into the directiondesignatedby the angles α, β, γ,with the phase change δ”
does not depend on anything being measured, let alone to be assigned a precise nu-
merical measurement value! Instead it sounds like talk about objective properties of
electrons (“being thrown out”) independent of measurement. Thus, Born originally
did not relate his interpretation to measurement, but to objective properties of scat-
tering processes, no matter whether these were observed.

Rephrased inmodern terminology (Born did not have the concept of an S-matrix).
Born’s statement above is made precise (and generalized) by the following rule:

Born’s rule (scattering form): In a scattering experiment described by the
S-matrix S,

Pr(ψout|ψin) := |ψ
∗
outSψin|

2

is the conditional probability density that scattering of particles prepared in the in-
stateψin results in particles in the out-stateψout. Here the in- andout-states are asymp-
totic eigenstates of total momentum, labelled by amaximal collection of independent
quantum numbers (including particle momenta and spins).

The scattering form of Born’s rule is impeccable and remains until today the ba-
sis of the interpretation of S-matrix elements, computed from quantummechanics or
quantum field theory.

The 1927 paper by Born [45] extends this rule on pp. 173 to probabilities for quan-
tum jumps (“Quantensprung”, pp. 172) between energy eigenstates, given by the ab-
solute squares of inner products of the corresponding eigenstates, still using objective
rather than measurement-based language3: For a system initially in state n given by

1 Apparently named such first in 1934 by Bauer [28, p. 302] (“la règle de Born”). Before that, during
the gestation period of finding the right level of generalization and interpretation, the pioneers talked
more vaguely about Born’s interpretation of quantummechanics (or of the wave function). For exam-
ple, Jordan [151, pp. 811] writes about “Born’s Deutung der Lösung [der] Schrödingergleichung”.
2 German original, Born [43, p. 865f]: “bestimmt die Wahrscheinlichkeit dafür, daß das aus der
z-Richtung kommende Elektron in die durch α, β, γ bestimmte Richtung (und mit einer Phasenänderung
δ) geworfen wird”.
3 “Das Quadrat |bnm|2 ist gemäß unserer Grundhypothese dieWahrscheinlichkeit dafür, daß das System
sich nach Ablauf der Störung im Zustand m befindet.”
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14.1 Early, measurement-free formulations of Born’s rule | 231

Born’s equation (9), “the square |bnm|2 is according to our basic hypothesis the prob-
ability for the system to be in state m after completion of the interaction”. Here state n
is the nth stationary state (eigenstate with a time-dependent harmonic phase) of the
Hamiltonian.

Born derives this rule from two assumptions. The first assumption, made on
pp. 170 and repeated on pp. 171 after equation (5), is that an atomic system is always in
a definite stationary state4: “Thus we shall preserve the picture of Bohr that an atomic
system is always in a unique stationary state. […] but in general we shall know in any
moment only that, based on the prior history and the physical conditions present, there
is a certain probability that the atom is in the nth state.”

Thus, for the early Born, the objective properties of a quantummechanical system
are the quantum numbers of the (proper or improper) stationary states of the system.
This assumption works indeed for equilibrium quantum statistical mechanics, where
expectations are defined in terms of the partition function and a probability distribu-
tion over the stationary states. It also works for nondegenerate quantum scattering
theory, where only asymptotic states figure. However, it has problems in the presence
of degeneracy, where only the eigenspaces, but not the stationary states themselves,
have well-defined quantum numbers. Indeed, [45] assumes—on pp. 159, remark after
his (2) and his Footnote 2—that the Hamiltonian has a nondegenerate, discrete spec-
trum.

Born’s second assumption is his basic hypothesis on pp. 171 for probabilities for
being (objectively) in a stationary state5: “there is a certain probability that the atom
is in the nth state. We now claim that as measure for this probability of state, one must
choose the quantity |cn|2 = |∫ψ(x, t)ψ∗n (x)dx|

2”.
The 1927 paper by Jordan [151, pp. 811] (citing Pauli) extends Born’s second as-

sumption further to an objective, measurement independent probability interpreta-
tion of inner products (probability amplitudes) of eigenstates of two arbitrary oper-
ators, seemingly without being aware of the conceptual problem this objective view
poses when applied to noncommuting operators.

The 1927 paper by Pauli [231, pp. 83, Footnote 1] contains the first formal state-
ment of aprobability interpretation for position6: “We shall interpret this function in the
spirit of Born’s viewof the “Gespensterfeld” in [43, 44]as follows: |ψ(q1 . . . qf )|2dq1 . . . dqf

4 “Wir werden also an dem Bohrschen Bilde festhalten, daß ein atomares System stets nur in einem
stationären Zustand ist. […] im allgemeinen aber werden wir in einem Augenblick nur wissen, daß auf
Grund der Vorgeschichte und der bestehenden physikalischen Bedingungen eine gewisse Wahrschein-
lichkeit dafür besteht, daß das Atom im n-ten Zustand ist.”
5 “[…] eine gewisseWahrscheinlichkeit dafür besteht, daßdasAtom imn-tenZustand ist.Wir behaupten
nun, daß als Maß dieser Zustandswahrscheinlichkeit die Größe |cn|2 = |∫ψ(x, t)ψ∗n (x)dx|

2 zu wählen
ist.”
6 “Wir wollen diese […] Funktion im Sinne der von Born in seiner Stoßmechanik [here he cites [43, 44]]
vertretenen Auffassung des “Gespensterfeldes” folgendermaßen deuten: Es ist |ψ(q1 . . . qf )|2dq1 . . . dqf
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232 | 14 A critique of Born’s rule

is the probability that, in the named quantum state of the system, these coordinates lie
simultaneously in the named volume element dq1 . . . dqf of position space.” Apart from
its objective formulation (no reference to measurement), this is a special case of the
universal formulation of Born’s rule given below:

The 1927 paper by von Neumann [215, pp. 45] generalizes this statement to arbi-
trary self-adjoint operators, again stated as an objective (that is, measurement inde-
pendent) interpretation. For discrete energy spectra and their energy levels, we still
read pp. 48: “unquantized states are impossible” (“nicht gequantelte Zustände sind un-
möglich”).

Note that like Born, Jordan and vonNeumann both talk about objective properties
of the system independent ofmeasurement. But unlikeBorn,who ties these properties
to the stationary state representation in which momentum and energy act diagonally,
Pauli ties it to the position representation, where position acts diagonally, and von
Neumann allows it for arbitrary systems of commuting self-adjoint operators.

From either Born’s or Jordan’s statement, one can easily obtain the following,
basis-independent form of Born’s rule, either for functionsA of stationary state labels,
or for functions A of position:

Born’s rule (objective expectation form): The value of a q-observable corre-
sponding to a self-adjoint Hermitian operator A of a system in the pure state ψ (or
the mixed state ρ) equals on average the q-expectation value ⟨A⟩ := ψ∗Aψ (that is,
⟨A⟩ := Tr ρA).

The first published statement of this kind seems to be in the 1927 paper by Landau
[170, (4a), (5)]. The interpretational part is in Footnote 2 there, which states that (the
formula corresponding in modern notation to ⟨A⟩ := Tr ρA) denotes the probability
mean (“Wahrscheinlichkeitsmittelwert”). Again there is no reference tomeasurement.

14.2 Formulations of Born’s rule in terms of measurement

As pointed out by Weyl [300, pp. 2], the derivation from Born’s and Jordan’s state-
ment does not extend to general operatorsA, due to noncommutativity and the result-
ing complementarity. Another consequence of this noncommutativity is that Born’s
stationary state probability interpretation and Pauli’s position probability density in-
terpretation cannot both claim objective status. Therefore, later interpretations relate
the notion of value of an observable (being in the n-state, or having position r) more
directly to measurement.

The 1927 paper by von Neumann [216] notes (on pp. 248) the problems result-
ing from noncommuting quantities that cannot be observed simultaneously. For a

die Wahrscheinlichkeit dafür, daß im betreffenden Quantenzustand des Systems diese Koordinaten sich
zugleich im betreffenden Volumenelement dq1 . . . dqf des Lageraums befinden.”
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14.2 Formulations of Born’s rule in terms of measurement | 233

theoretical expectation value with natural properties, the necessity of the formula
⟨A⟩ := Tr ρA with Hermitian ρ (his U) of trace 1 is derived axiomatically (on pp. 255).
This is abstractmathematical reasoning independent of any relation tomeasurement,
and hence belongs to the formal (uninterpreted) core of quantum physics. However,
the motivation for his axioms, and hence their interpretation, is taken from a consid-
eration (on pp. 247) of the measurement of values in an ensemble of systems, taking
the expectation to be the ensemblemean of themeasured values. Specialized to a uni-
form (“einheitlich”) ensemble of systems in the same completely known (pure) state
ψ of norm 1, he then finds (on pp. 258) that ρ = ψψ∗, giving ⟨A⟩ := ψ∗Aψ.

In the present terminology, we may phrase von Neumann’s interpretation of
q-expectation values as follows:

Born’s rule (measured expectation form): If a q-observable corresponding to a
self-adjoint Hermitian operator A is measured on a system in the pure state ψ (or the
mixed state ρ), the results equal, on average, the q-expectation value ⟨A⟩ := ψ∗Aψ
(that is, ⟨A⟩ := Tr ρA).

Note that the q-expectation value has a formal meaning independent of the in-
terpretation; themeasured expectation form of Born’s rule asserts that measurements
result in a random variable, whose expectation agrees with the formal q-expectation.
To justify the “equal”, the average in question cannot be a sample average (where only
an approximate equal results, with an accuracy depending on size and independence
of the sample), butmust be considered as the theoretical expectation value of the ran-
dom variable.

On a purist note, we can only take finitely many measurements on a system. But
the expectation value of a randomvariable is insensitive to the result of a finite number
of realizations. Thus, in the most stringent sense, the expectation form of Born’s rule
says nothing at all about measurement. However, the content of the expectation form
is roughly the content of the more carefully formulated statement (MI) discussed in
Section 8.1, specialized to a pure state. (MI) does not have the defect just mentioned.

More conventionally, Born’s rule is phrased in terms of measurement results and
their probabilities rather than expectations. As part of Born’s rule, it is usually stated
(see, for example, [306]) that each result of a measurement of a q-observable exactly
equals one of the eigenvalues.

A precise basic form of Born’s rule (often augmented by a more controversial col-
lapse statement about the state after a measurement7 not discussed here) is the fol-
lowing, taken almost verbatim fromWikipedia [306]:

7 For example, in his famous 1930 book, Dirac [70, pp. 49] states: “The state of the system after the
observation must be an eigenstate of [the observable] α, since the result of a measurement of α for this
state must be a certainty”. In the third edition [71, pp. 36], he writes: “Thus after the first measurement
has been made, the system is in an eigenstate of the dynamical variable ξ , the eigenvalue it belongs to
being equal to the result of the first measurement. This conclusion must still hold if the second measure-
ment is not actually made. In this way we see that a measurement always causes the system to jump into
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234 | 14 A critique of Born’s rule

Born’s rule (discrete form): If a q-observable corresponding to a self-adjointHer-
mitian operator Awith discrete spectrum is measured in a system described by a pure
state with normalized wave function ψ then
(i) the measured result will be one of the eigenvalues λ of A, and
(ii) the probability of measuring a given eigenvalue λi equals ψ∗Piψ, where Pi is the

projection onto the eigenspace of A corresponding to λi.

A related statement is claimed to hold for arbitrary spectra with a continuous part,
generalizing both the discrete form and the original form.

Born’s rule (universal form)8: If a q-observable, corresponding to a self-adjoint
Hermitian operator A, is measured in a system described by a pure state with normal-
ized wave function ψ then
(i) the measured result will be one of the eigenvalues λ of A, and
(ii) for any open interval Λ of real numbers, the probability of measuring λ ∈ Λ equals

ψ∗P(Λ)ψ, where P(Λ) is the projection onto the invariant subspace of A, corre-
sponding by the spectral theorem to the spectrum in Λ.

If the measurement result λi is an isolated eigenvalue of A, the universal form reduces
to the discrete form, since one can take Λ to be an open interval intersecting the spec-
trum in λi only, and in this case, P(Λ) = Pi.

Using the spectral theorem, it is not difficult to show that the universal form of
Born’s rule implies the measured expectation form. Conversely, the measured expec-
tation form of Born’s rule almost implies the universal form. It fully implies the second
part (ii), from which it follows that the first part (i) holds with probability 1 (but not
with certainty, as the universal form claims).9

an eigenstate of the dynamical variable that is being measured, the eigenvalue this eigenstate belongs
to being equal to the result of the measurement.”
A 2007 source is Schlosshauer [265], who takes the collapse (“jump into an eigenstate”) to be part
of what he calls the “standard interpretation” of quantummechanics, but does not count it as part of
Born’s rule (pp. 35). On the other hand, Landau & Lifschitz [171, Section 7] explicitly remark that the
state after the measurement is in general not an eigenstate.
8 The quantumfield theory book byWeinberg [294] pays (on pp. 50 (2.1.7)) lip service to the universal
form of Born’s rule. The only place where Born’s rule is used is on pp. 135 (3.4.7), where instead, the
scattering form is employed to get the transition rates for scattering processes. Thus, quantum field
theory only relies on the scattering form of Born’s rule.
9 This is not just hair splitting. The difference between probability 1 and certainty can be seen by
noting that the probability that a random number drawn uniformly from [0, 1] is irrational with prob-
ability 1, while measurements usually produce rational numbers.
In general, the expectation form certainly allows finitely many exceptions to (i), and hence says,
strictly speaking, nothing at all about the possible measurement results. (This is well illustrated in
the story “The Metaphysian’s Nightmare” by the logician Bertrand Russell [254]: “There is a special
department ofHell for students of probability. In this department there aremany typewriters andmany
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Unfortunately, the application of Born’s rule to measurement problems in gen-
eral is highly questionable. Because of the equivalence just mentioned, it is enough to
discuss the universal form of Born’s rule.

14.3 Limitations of Born’s rule
Every age has scoffed at its predecessor, accusing it of having generalised too boldly and too naively.

Henri Poincaré, 1902 [241, p. 140]

We shall assume the energy of any dynamical system to be always an observable.
Paul Dirac, 1930 [70, p. 38]

Das Resultat ist aber merkwürdiger, als es im ersten Augenblick den Anschein hat. Bekanntlich
nimmtψ∗ψexponentiell mit wachsendemAbstand vomAtomkern ab. Also besteht immer noch eine
endliche Wahrscheinlichkeit dafür, das Elektron in sehr weitem Abstand vom Atomkern zu finden.

Werner Heisenberg, 1930 [120, p. 25]

It is not so that the Schrödinger equation (or itsmatrixmechanics equivalent)must be supplemented
by at least a passable interpretation of the wavefunction (or the matrix elements) before the theory
is of any use. Heisenberg, Pauli, Schrödinger, Dirac and their colleagues had firmly established the
power of the theory by doing a host of intricate and highly successful calculations before the Born
interpretation and the Uncertainty Principle had been put forward.

Kurt Gottfried, 1991 [103, p. 35]

Now, the crux of the problem which worries Wigner so much is that the reduction rule appears to
be in contradistinction with the time evolution described by Schrödinger’s equation. The answer,
which was of course well known to Bohr, but has been made formally clear by the Italians [Daneri,
Loinger and Prosperi], is that the reduction rule is not an independent axiom, but essentially a
thermodynamic effect, and accordingly, only valid to the thermodynamic approximation.

Leon Rosenfeld, 1972 [251]

Though usually stated as universally valid, Born’s rule has severe limitations. In the
universal form, it neither applies to photodetectionnor to themeasurement of the total
energy, just to mention the most conspicuous misfits. Moreover, equating the results
of measurements with exact eigenvalues is very questionable when the latter are ir-
rational or (as in the case of angular momentum) multiples of a not-exactly- known
constant of Nature. In addition, real measurements rarely produce exact numbers (as
Born’s rule would require it) but (see [220]) numbers that are themselves subject to
uncertainty. Because of these limitations and the inherent ambiguities in specifying
what constitutes a measurement10 and what qualifies as a measurement result, sub-
sequent derivations can never claim universal validity either.

monkeys. Every time that amonkeywalks on a typewriter, it types by chance one of Shakespeare’s son-
nets.”) However, the application to spin measurements and to quantum information theory requires
that (i) holds at least for binary spectra. Hence, the expectation form is slightly deficient.
10 This is a highly nontrivial problem in quantum statistical mechanics; see Allahverdyan et al. [6].
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Problems with Born’s rule include:
1. Many things physicists measure have no simple interpretation in terms of a Born

measurement. Examples include spectral lines and widths, life times of unstable
particles, chemical reaction rates, or scattering cross-sections. Often lots of ap-
proximate computations are involved.

2. Born’s rule does not cover the multitude of situations, where typically only sin-
gle measurements of a q-observable are made. In particular, Born’s rule does not
apply to typical macroscopic measurements, whose essentially deterministic pre-
dictions are derived from statistical mechanics.

3. Many measurements in quantum optics are POVM measurements [307], that is,
described by a positive operator-valued measure; cf. Section 11.5. These follow a
different law, of which Born’s rule is just a very special case, where the POVM is
actually projection-valued. The general POVM law can be derived fromBorn’s rule
applied to afictitious vonNeumannexperiment in an extendedHilbert space. This
shows its consistency with Born’s rule, but still disproves the latter for the actual
physical states in the physical Hilbert space.

4. At energies below the dissociation threshold (that is, where the spectrum of the
HamiltonianH, the associated q-observable, is discrete), energymeasurements of
a system almost never yield an exact eigenvalue ofH. For example, nobody knows
the exact value of the Lamb shift, a difference of eigenvalues of theHamiltonian of
the hydrogen atom; the (reasonably) precise measurement was even worth a No-
bel prize (1955 for Willis Lamb). Indeed, the energy levels of most realistic quan-
tum systems are only inaccurately known.

5. In particular, Born’s rule does not apply to the total energy of a composite system,
according to Dirac one of the key q-observables in quantum physics, since the
spectrum is usually very narrowly spaced and precise energy levels are known
only for the simplest systems in the simplest approximations. Therefore, Born’s
rule cannot be used to justify the canonical ensemble formalism of statistical me-
chanics; it can at best motivate it.

6. The same holds for the measurement of masses of relativistic particles with
4-momentum p, where a measurement never yields an exact eigenvalue of the
mass operator M := √p2. Indeed, the masses of most particles are only inaccu-
rately known.

7. When a particle has been prepared in an ion trap (and hence is there with cer-
tainty), Born’s rule implies a tiny but positive probability that, at an arbitrarily
short time afterwards, it is detected a light year away.11 Already Heisenberg found

11 Indeed, for a single massive particle, Born’s rule states that |ψ(x, t)|2 is the probability density for
locating at a given time t the particle at a particular position x anywhere in the universe, and the
Fourier transform |ψ̃(p, t)|2 is the probability density for locating at a given time t the particle with a
particular momentum p. In the present case, the position density has bounded support, so by a basic
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this conclusion strange. Clearly, |ψ(x)|2 cannot be the exact probability density for
being detected at x.

8. This argument against the exact probability density interpretation of |ψ(x)|2works
even for relativistic particles. A very general rigorous argument for this instanta-
neous spreading was given by Hegerfeldt [116]. For example, it applies in the
multiparticle framework of Keister & Polyzou [154].

9. Hegerfeldt’s result also applies rigorously to electrons in quantum electrodynam-
ics (QED). The free QED electron can be described as follows in terms of a non-
local single-particle Hamiltonian. The single electron sector of renormalized QED
including infrared dressing is invariant under Poincaré transformations, since
there is no scattering. Its Hilbert space carries a reducible unitary representation
of the Poincaré group. The generator of time defines the Hamiltonian H. The re-
solvent (E−H)−1 equals the renormalized electron propagator, and is given by the
Kallen-Lehmann formula associated with some continuous mass density (due to
infrared dressing effects) whose support extends from the nominal electron mass
to infinity.
The mass spectrum is nondegenerate and has a branch point at the nominal elec-
tron mass, where the continuous mass spectrum has a sharp peak. This means
that the free QED electron has an additional mass degree of freedom, which
formally behaves like an additional momentum degree of freedom. This mass
degree of freedom generates the continuous mass spectrum. Therefore the free
QED electron is not an elementary particle12 in the sense of Wigner but a stable
infraparticle; see Schroer [268] and Buchholz [56, p. 65f]. The details of the
mass density are not completely known but the basic structure, including the
branch point, of the electron propagator, is discussed in Section II of Appelquist
& Carazzone [12].

10. A no-go theorem for exact measurement by Wigner [305] rules out projective
measurements of a particle being in a given region, since the corresponding pro-
jector does not commute with all additive conserved quantities. See also Ozawa
[227] and Araki & Yanase [13].

11. The measurement of quantum fields is not covered by Born’s rule. These are
q-observables depending on a space-time argument, and one can prepare or
measure events at any particular spacetime position at most once. Thus, it is im-
possible to repeat measurements, and the standard statistical interpretation in
terms of sufficiently many identically prepared systems is impossible. In quan-

theorem of harmonic analysis, the momentum density must have unbounded support. This implies
the claim.
12 In the quantum mechanical treatment of multi-electronic systems, the mass degree of freedom is
generally suppressed, a sensible approximation given the peaked mass spectrum. Indeed, infrared
problems are not much addressed in the literature.
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tum field theory, the notion of an ensemble can therefore not be understood as
an actual repetition by repeated preparation.

In particular, the measurement of quantum fields is not covered by Born’s rule in its
standard measurement-based forms. This is the reason why (unlike scattering appli-
cations) macroscopic applications of quantum field theory never invoke Born’s rule.
Indeed, Born’s rule cannot be strictly true in relativistic quantum field theory at finite
times (that is, outside its use in interpreting asymptotic S-matrix elements), and hence
not in Nature.

To uphold Born’s rule in the nonrelativistic case, onewould, in view of points 4–6,
have to treat the concept of measurement as that of a fictitious, infinitely precise mea-
surement. In particular, this would exclude a subjective interpretation of measure-
ment results and associated probabilities in terms of the experimenter’s knowledge.

Points 7–9 imply that thewave function, andhence thedensity operator, encode in
their basic operational interpretation unrealistic, highly nonlocal information. Thus,
nonlocality is explicitly built into the very foundations of quantummechanics as con-
ventionally presented.13

We conclude that Born’s rule has, like any other statement in physics, its domain
of validity but leads to problems when applied outside this domain.14 From an anal-
ysis of many different q-observables and measurement protocols, it seems that the
discrete form of Born’s rule needs four conditions for its validity. It is valid precisely
for measuring q-observables that simultaneously
– have only a discrete spectrum,
– are measured over and over again in identical states (to make sense of the proba-

bilities),
– there are well-separated adjacent eigenvalues, whose differences are significantly

larger than the measurement resolution,
– the measured value is adjusted to exactly match the spectrum, which must be

known exactly prior to the measurement.

The universal version of Born’s rule has similar limitations also when restricted to
purely continuous spectra; in this case it seems to be valid only in Born’s original scat-
tering form.

13 Processing nonlocal information, it is no surprise that standard quantum mechanics defined by
the Schrödinger equation violates the conclusions of Bell-type theorems (see the discussion and ref-
erences in Neumaier [194]). It already violates their assumptions!
14 Progressing from the Born rule to so-called positive operator valued measures (POVMs) is already
a big improvement, commonly used in quantum optics and quantum information theory. These are
adequate for measurements in the form of clicks, flashes or events (particle tracks) in scattering ex-
periments, and perhaps only then.
But these still do not cover measurements of energy, or of the Lamb shift, or of particle form factors.
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15 Pure states and mixed states

In this chapter, the concepts of states and ensembles are critically reviewed. Among
other things, it is shown that if the state of every composite quantum system contains
all information that can be known about a system, states cannot be pure states.

In Section 15.1, we criticize the standard practice of treating the state vector (that
is, a pure state) as the complete description of a (single, or frequently prepared) quan-
tum system. Section 15.2 shows that the density operator contains objective infor-
mation about single quantum systems. This conclusion is reinforced in Section 15.3,
which discusses Gibbs’ in his time revolutionary notion of fictitious ensembles for rep-
resenting singlemacroscopic systems in equilibrium. The final Section 15.4 shows that
pure states for objects in a bounded region of space are also questionable from the per-
spective of relativistic quantum field theory.

15.1 What is a state?

In physics, the state of a physical system (whether classical or quantum) gives a com-
plete description of the system at a given time. The following is a concise formulation
of this:

(S1) The state of a system (at a given time) encodes everything that can be said (or
“can be known”) about the system at this time, including the possible predictions for
later times, and nothing else.

Thus, every property of the system can (in principle) be computed from its state.
For a complex system, knowledge about the whole system is usually obtained by

collecting knowledge about its various parts. Thismakes sense only if we also require:
(S2) Every property of a subsystem is also a property of the whole system.
Indeed, not knowing something about the subsystem means not knowing every-

thing about the system as a whole, and hence not knowing the precise state of the
system.

Therefore, common sense dictates that a sound, observer-independent interpre-
tation of quantum physics should satisfy (S1) and (S2).

Now (S2) says that the state of the full system determines all properties of any of
its subsystems. Hence, it determines—by (S1)—the state of each subsystem to the last
detail. Thus, we conclude:

(S3) The state of a system determines the state of all its subsystems.
A macroscopic body should therefore have a valid microscopic quantum descrip-

tion—a quantum state—that determines all observable properties on every level. In
particular, an approximate hydromechanical classical description for themost impor-
tant observable properties, namely the q-expectation values of the fields, must be ob-

https://doi.org/10.1515/9783110667387-015
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240 | 15 Pure states and mixed states

tainable from this exact quantum state. (The process to achieve this is usually called
coarse graining.)

Property (S3)must hold for logical reasons even though, in practice, wemay never
know the precise state of the system and/or the subsystems. Indeed, we usually know
only very little information about any system, unless the latter is so tiny that it can be
fully described by very few parameters.

Unfortunately, none of the mainstream versions of the interpretation of quantum
mechanics (that is, those not invoking hidden variables) are anywhere presented in
a form that would satisfy our conclusion (S3). Since the deficiency always has the
same root—the treatment of the density operator as representing a state of incomplete
knowledge, a statistical mixture of pure states—it is enough to discuss one specific in-
terpretation. We shall look at the interpretation given in the very influential treatise
of theoretical physics by Landau & Lifshitz [171, 172]. They start their discussion of
quantummechanics with a particular version of Born’s rule:

[171, p. 6] “The basis of the mathematical formalism of quantum mechanics lies in the proposition
that the state of a system can be described by a definite (in general complex) function Ψ(q) of the
coordinates. The square of themodulus of this functiondetermines the probability distribution of the
values of the coordinates: |Ψ2|dq is the probability that ameasurement performedon the systemwill
find the values of the coordinates to be in the element dq of configuration space. The function Ψ is
called thewave function of the system. […] If thewave function is knownat some initial instant, then,
from the very meaning of the concept of complete description of a state, it is in principle determined
at every succeeding instant”.

Thus, in terms of our formal core, the complete description of the system is declared
by Landau&Lifshitz to be a pure state, and the properties of the systemare declared to
be the probabilities of potential measurement results. They then consider parts (sub-
systems) and observe:

[171, p. 7] “Let us consider a system composed of two parts, and suppose that the state of this system
is given in such a way that each of its parts is completely described.†”

Footnote: “† This, of course, means that the state of the whole system is completely
described also. However, we emphasize that the converse statement is by nomeans true:
a complete description of the state of the whole system does not in general completely
determine the states of its individual parts”

Therefore, they explicitly deny (S3). In fact, except in the special case discussed in
the context of the above quote—where the state factors into a tensor product of states
of the subsystems—they do not indicate at all how the state of a system and that of its
parts are related.Moremysteriously, nowhere in the literature seems to be adiscussion
thatwould tell us anything on the formal level about the relationshipbetween thepure
state of a systemand the pure state of a subsystem. There seems to be no such relation,
except in the idealized, separable case mentioned above, usually assumed to be valid
only before an interaction happens.
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15.2 The nature of mixed state? | 241

But this would mean that the quantum state of a physics lab has nothing to do
with the quantum states of the equipment in it, and of the particles probed there! This
is very strange for a science such as physics that studies large systems primarily by de-
composing them into its simple constituents and infers properties of the former from
collective properties of the latter.

This truly unacceptable situation shows that there is something deeply wrong
with the traditional interpretations.1 It is no surprise that this leads to counterintu-
itive paradoxes in situations, such as experiments with entangled photons, where a
larger (for example, 2-photon) system is prepared, but its constituents (here 2 single
photons) are observed.

15.2 The nature of mixed state?

It is unquestionable thatwe cannever know the exact quantumstate of a physics labor
a piece of its equipment. Because of this, it has become respectable to interpret quan-
tum mechanics not in terms of what is, but in terms of what is known to the person
modeling a physical system. The system state then becomes a complete description
no longer of the physical system, but of the knowledge available.2 Uncertainty about
the pure state is then modeled as a probability distribution for being in a pure state.
Averagingwith correspondingweight leads tomore generalmixed states described by
density operators. In this context, Landau & Lifshitz write:

[172, p. 16] “The quantum-mechanical description based on an incomplete set of data concerning
the system is effected by means of what is called a density matrix […] The incompleteness of the
description lies in the fact that the results of various kinds of measurement which can be predicted
with a certain probability from a knowledge of the density matrix might be predictable with greater
or even complete certainty from a complete set of data for the system, from which its wave function
could be derived.”

Based on this, they derive the interpretation of the q-expectation ⟨A⟩ := Tr ρA as the
expectation value of A in a mixed3 state ρ:

[172, p. 17] “The change from the complete to the incomplete quantum-mechanical description of
the subsystemmay be regarded as a kind of averaging over its various ψ states. […] the mean value
f becomes the trace (sum of diagonal elements) of this operator”

1 In addition, there are the traditional difficulties of interpretations of quantummechanics, well sum-
marized in Section 3.7 of the quantummechanics textbook by Weinberg [297].
2 It is usually not addressed whose knowledge this is; presumably it is the knowledge of the person
creating the mathematical model of the quantum system. Taken at face value, this would make the
systemstate a functionof themental state of themodeler’smind, another trulyunacceptable situation.
3 In the literature, such a mixed state is often called a proper mixed state, in contrast to the im-
proper mixed states arising as a reduced density operator through a partial trace; cf. Section 10.2.
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242 | 15 Pure states and mixed states

However, on the next page they call their description an illustration only, denying it
any trace of reality:

[172, p. 18] “It must be emphasised that the averaging over various ψ states, which we have used in
order to illustrate the transition froma complete to an incomplete quantum-mechanical description,
has only a very formal significance. In particular, it would be quite incorrect to suppose that the
description by means of the density matrix signifies that the subsystem can be in various ψ states
with various probabilities and that the averaging is over these probabilities. Such a treatment would
be in conflict with the basic principles of quantum mechanics.
The states of a quantum-mechanical system that are described by wave functions are sometimes
called pure states, as distinct from mixed states, which are described by a density matrix. Care
should, however, be taken not to misunderstand the latter term in the way indicated above.
The averaging by means of the statistical matrix according to (5.4) has a twofold nature. It com-
prises both the averaging due to the probabilistic nature of the quantum description (even when
as complete as possible) and the statistical averaging necessitated by the incompleteness of our
information concerning the object considered. For a pure state only the first averaging remains,
but in statistical cases both types of averaging are always present. It must be borne in mind, how-
ever, that these constituents cannot be separated; the whole averaging procedure is carried out as
a single operation, and cannot be represented as the result of successive averagings, one purely
quantum-mechanical and the other purely statistical”.

Thus, Landau and Lifschitz reject the subjective, knowledge-based view, as one can-
not divide the information contained in the density operator into an objective, pure
part corresponding to the objective properties of the system, and a statistical part ac-
counting for the lack of knowledge.

But this alsomeans that their derivation of the interpretation of the q-expectation
⟨A⟩ := Tr ρA as expectation value is invalid, beingbasedonan invalid illustration only.
Note that this formula is heavily used in quantum statistical mechanics and quan-
tum field theory. It is often applied there in contexts, where no measurement at all
is involved, and when it is not even clear how one should measure the operators in
question.4 Indeed, most of quantum statistical mechanics is not concerned withmea-
surement at all. In all these cases, the connection tomeasurement and hence to Born’s
rule is absent, and even the hand-waving “illustrative” derivation given is spurious,
as the items going into the derivation are never actually measured.

On the other hand, the use of the density operator is central to quantum statis-
tical mechanics. The fact that the latter predicts qualitatively and quantitatively the
thermodynamics of macroscopic systems shows that the density operator contains
objective, knowledge-independent information, and is the true carrier of the state in-
formation in quantum physics.

This is one of the reasons why the present book features the density operator
as basic, both in the description of the formal core of quantum physics presented in

4 We mentioned already in Section 14.3 the problems with interpreting measurements of the energy,
corresponding to the operator H figuring in all of quantum statistical mechanics.
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15.3 What is an ensemble? | 243

Section 2.1 and in the thermal interpretation. Pure states then appear as idealizing
approximation under the conditions discussed in Section 2.5.

15.3 What is an ensemble?

We may imagine a great number of systems of the same nature, but differing in the configurations
and velocities which they have at a given instant, and differing not merely infinitesimally, but it
may be so as to embrace every conceivable combination of configuration and velocities. […] The
first inquiries in this field were indeed somewhat narrower in their scope than that which has been
mentioned, being applied to the particles of a system, rather than to independent systems.

Josiah Willard Gibbs, 1902 [96, pp. vii–viii]

So aufgefaßt, scheint die Gibbssche Definition geradezu widersinnig. Wie soll eine demKörper wirk-
lich eignende Größe abhängen nicht von dem Zustand, den er hat, sondern den er möglicherweise
haben könnte? […] Es wird eine Gesamtheit mathematisch fingiert. […] erscheint es schwierig,
wenn nicht ausgeschlossen, dem Begriffe der kanonischen Gesamtheit eine physikalische Bedeu-
tung abzugewinnen.

Paul Hertz, 1910 [126, pp. 226f]

The thermal interpretation of quantum physics says that, consistent with statistical
thermodynamics, a q-expectation (q-ensemble mean) is interpreted as an (in princi-
ple) approximately measurable quantity. Except when the statistical context is imme-
diate (such as in computer simulations), the q-expectation should not be interpreted
as a statistical average over a population of many realizations.

The q-expectation, conventionally called the ensemble expectation, becomes in
the thermal interpretation simply the uncertain value. Therefore, the notion of q-
ensemble is to be understood not as an actual repetition by repeated preparation.
It should be understood instead in the sense of a fictitious collection of imagined
copies, of which only one is actually realized, giving an intuitive excuse for using the
statistical formalism for a single system.

The association of a fictitious ensemble to single thermal systems goes back to
Gibbs, the founder of the ensemble approach to classical statisticalmechanics. Hewas
very aware that thermodynamics, and hence statistical mechanics, applies to single
physical systems. His arguments are today as cogent as when he introduced them.

In classical statistical mechanics, the distinction between the deterministic and
stochastic description becomes blurred, as each singlemacroscopic system is already
described by a phase space density (multiparticle distribution function), although the
latter behavesmathematically in every respect like aprobability density that expresses
the properties of a population of identical systems.

This tension in the terminology is already visible in the famous statisticalmechan-
ics textbook by Gibbs [96] in 1902, where he introduced in the preface (fromwhich the
above quote is taken) fictitious ensembles to bridge the conceptual gap.
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244 | 15 Pure states and mixed states

Thus, to deduce properties of macroscopic materials, Gibbs uses an ensemble of
macroscopic systems, in contrast to Boltzmann, who introduced statistical mechanics
for gases byusing ensembles ofmicroscopic atoms. Treating a collection of particles in
a gas as an ensemble (as Boltzmann did) makes statistical sense, as there are a huge
number of them. But the Gibbs formalism is applied to single macroscopic systems,
such as a brick of iron rather than to its many constituents. Treating a single system
as part of a fictitious ensemble was a very bold step taken by Gibbs. This allowed him
to extend Boltzmann’s work from ideal gases to arbitrary chemical systems, in a very
robust way. His statistical mechanics formalism, as encoded in the textbook (Gibbs
[96]), survived the quantum revolution almost without change; the book reads almost
like a modern book on statistical mechanics!

Though exceedingly successful, Gibbs’ fictitious ensemble raised in his time se-
vere objections in thephysics community, suchas the responsebyHertz quoted above,
who complained that an ensemble is feigned mathematically. Of course Gibbs was
aware that imagined systems have no physical implications, but these were needed at
a time when mathematics had not yet the abstract character that it has today.

Today, mathematical theories are simply formal systems used without hesitation
in applications, in which the terms may mean something completely different from
their meaning in the uses that gave the names to the terms. For example, the mathe-
matical notion of a vector is today an abstract tool routinely used in contexts, where
the original geometric notion of a vector ismeaningless: No physicist thinks of a quan-
tummechanical state vector in terms of a little arrow depicting a translationalmotion.

In the same spirit, mathematical statistics (and hence statistical mechanics) may
be used as a tool, in which expectation values figure as abstract notions without the
need to imagine an ensemble of copies of the single system under study, over which
the expectation would be an imagined average. Thus, we are liberated from having to
think of the mathematical q-expectation values manipulated in statistical mechanics
as being true averages over fictitious copies without a physical meaning. Instead, the
statistical terminology is simply a reminder of which laws (originally stemming from
statistical data analysis) are applicable to these values, in the sameway as the geomet-
ric terminology of a vector indicates the laws valid for manipulating objects behaving
algebraically like vectors.

15.4 Pure states in quantum field theory

That pure states cannot have a fundamental meaning can also be seen from the per-
spective of quantum field theory. It is a very little known fact that, in any interacting
relativistic quantum field theory, the notion of a pure state loses its meaning. Results
from algebraic quantum field theory (see Yngvason [311, pp. 12]) imply that all local
algebras induced by a relativistic quantum field theory on a causal diamond (an inter-
section of a future cone and a past cone with nonempty interior) are factors of type
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15.4 Pure states in quantum field theory | 245

III1 in von Neumann’s classification of factors as refined by Connes [61]. Picking such
a causal diamond containing our present planetary system implies that we may as-
sume the algebra of observables currently accessible tomankind to be such a factor of
type III1. Remarkably, such a C∗-algebra𝔸 has no pure states [311, pp. 14].5 Therefore,
in these representations, one cannot rigorously argue about states by considering par-
tial traces in nonexistent pure states! This shows that pure states must be the result of
a major approximating simplification, and not something fundamental.

Note that𝔸 has infinitely many unitarily inequivalent irreducible representations
onHilbert spaces (corresponding to the different superselection sectors of the theory).
But in each such representation, the algebra 𝔸 of bounded q-observables is vanish-
ingly small compared to the algebra of all bounded operators. A vector state in the
Hilbert spaceℍ of an irreducible representation of a local algebra𝔸 of type III1 (which
is a pure state in ℍ) can therefore still be mixed as a state of 𝔸.6 The vector state is
guaranteed to be pure only relative to the algebra of all bounded operators onℍ. But
this algebra is far bigger than the algebra 𝔸, and contains lots of operators that have
no interpretation as q-observables. This is the essential difference to the case of type I
algebras, realizable in a Fock space, which have many pure states. These algebras are
the local algebras of free quantum field theories, and only encode systems of nonin-
teracting particles.

Therefore, what breaks down in quantum field theory is the simple equation
“q-observable = self-adjoint Hermitian linear operator”. Once this equation is broken,
the question whether a state is pure becomes dependent on the precise specifica-
tion, of which operators are q-observables. In gauge theories, the situation is further
complicated by the fact that the local algebras have a nontrivial center consisting of
charges that in each irreducible representation are represented trivially. Thus, a single
irreducible representation on a single Hilbert space (corresponding to a single super-
selection sector) is no longer sufficient to characterize the complete algebra of local
q-observables.

To give up the assumption that every bounded self-adjoint operator is a
q-observable has serious consequences for the interpretation of quantum physics.
Indeed, a test for a pure state is in terms of q-observables an observation of the or-
thogonal projector to the subspace spanned by the state. If this is not a q-observable,

5 An explicit example of a factor of type III1, involving an infinite array of spin-1/2 particles, is given
in equations (27) and (29) of Yngvason [311].
6 For example, for an arbitrary mixed state of a Hilbert space ℍ0, the GNS construction produces
another Hilbert space, in which this state is pure. Note that in quantum physics, the GNS construction
is of limited value only, as this Hilbert space depends on the state one started with, whereas standard
quantum mechanics works with pure states contained in a fixed Hilbert space. One therefore needs
a distinguished state to define a Hilbert space. Now the only distinguished state in quantum field
theory is the vacuumstate. But for gauge theories, suchas quantumelectrodynamics, theHilbert space
corresponding to this vacuum representation does not contain any charged state!
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246 | 15 Pure states and mixed states

then it is (in principle) impossible to make this test. Therefore, testing for being in a
pure state is impossible, since these are no longer physical propositions.

So one cannot decide whether a system is in a pure state. To assume this is thus
a metaphysical act, and one can dispense with it without any loss of information.
But then, all traditional interpretations break down completely, since they start with
Born’s rule for pure states and derive everything else from it.
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Über die physikalische Interpretation der Formeln sind die Meinungen geteilt.

Max Born, 1926 [44, p. 803]

Das Einzelsystem trägt wirklich die Fähigkeit in sich, einem bestimmten Meßvorgang gegenüber in
verschiedener Weise zu reagieren, d. h. verschiedene Meßwerte für ein und dieselbe Zustandsgröße
zu liefern: welchen, hängt vom Zufall ab, oder besser wohl von den Phasenbeziehungen zwischen
dem System und dem Meßinstrument.

Erwin Schrödinger, 1929 [64, Vorwort]

I reject the basic idea of contemporary statistical quantum theory, insofar as I do not believe that
this fundamental concept will provide a useful basis for the whole of physics.

Albert Einstein, 1949 [80, p. 666]

It is usually believed, that the current orthodox theory actually accounts for the ‘nice linear traces’
observed in the Wilson chamber etc. I think this is a mistake, it does not.

Erwin Schrödinger, 1958 [270, p. 163]

Personally I still have this prejudice against indeterminacy in basic physics.
Paul Dirac, 1972 [72, p. 7]

When it comes to specifying exact details, one discovers thatwe cannot rigorously definewhat quan-
tum mechanical amplitudes are, what it means when it is claimed that ‘the universe will collapse
with such-and-such probability’, what and where the observers are, what they are made of, and
so on. Yet such questions are of extreme importance if one wants to check a theory for its self-
consistency, by studying unitarity, causality, etc.

Gerard ’t Hooft, 1999 [137, p. 95]

My own conclusion (not universally shared) is that today there is no interpretation of quantumme-
chanics that does not have serious flaws.

Steven Weinberg, 2013 [297, p. 95]

I consider it to be an intellectual scandal that, nearly one hundred years after the discovery of ma-
trix mechanics by Heisenberg, Born, Jordan and Dirac, many or most professional physicists – ex-
perimentalists and theorists alike – admit to be confused about the deeper meaning of Quantum
Mechanics (QM), or are trying to evade taking a clear standpoint by resorting to agnosticism or to
overly abstract formulations of QM that often only add to the confusion. […] I felt that the subject
had better remain a hobby until later in my career. […] But when I was approaching mandatory
retirement I felt an urge to clarify my understanding of some of the subjects I had had to teach to
my students for thirty years.

Jürg Fröhlich, 2019 [92, p. 1]

From its very beginning in 1926, what turned out to be the formal core of quan-
tum mechanics had conflicting interpretations—initially the deterministic view of
Schrödinger and the statistical view of Born. In 1929, Schrödinger conceded the need
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248 | 16 Traditional interpretations

for a statistical interpretation. But the details remained controversial. Today, after
almost 100 years of interpretation quarrels, the matter is still not settled. As the above
quotes show, many of the founders of quantum mechanics were never satisfied with
the interpretation of quantum mechanics, and even some of today’s Nobel prize win-
ners spent significant effort on the interpretation issue.1

In this chapter, we review some of the traditional interpretations from the per-
spective of the thermal interpretation.

16.1 A classification of interpretations
With regard to the interpretation of quantum physics, this book features primarily the
thermal interpretation. But as already mentioned in Section 1.1, a multitude of other
interpretations of quantummechanics exist; most of them in several variants. We dis-
tinguish the following types:

(I) Individual interpretations (such as certain variants of the Copenhagen inter-
pretation), where the state of a system is determined by an individual realization of
the system, and contains the information about everything that can possibly be said
about it.

(S) Statistical interpretations (such as the minimal interpretation), where the
state of a system says (except in special cases) nothing about a single system, but is
only about statistical predictions of actual measurements on an ensemble of similarly
prepared systems.

(K) Knowledge interpretations, where a state says nothing objective about the
systems modeled, but is only about the subjective knowledge of these systems.

(O) Other interpretations, where a state consists (as in Bohmian mechanics) of
more than a state vector or density operator, is (as in many worlds interpretations) by
conception about more than actual events recorded in actual experiments, or where
(as in objective collapse theories) quantum mechanics is modified by modifying the
Schrödinger equation.

In the mainstream interpretations of the types (I) and (S), the result of a single
measurement is—in contrast to classical mechanics—not even theoretically deter-
mined before the measurement is done.2

The thermal interpretation is of type (I), but shares with classical mechanics the
feature that the result of every single measurement is fully determined by the state
of an isolated system containing the system measured and the detector. As we shall
see, themainstream interpretationsmay be regarded as partial versions of the thermal
interpretation.

1 They did so only after their retirement: While pursuing their career, they had to research issues
better rewarded by the scientific community and kept—like Fröhlich and probably most quantum
physicists—the foundational issues on the back burner.
2 However, expositions of both views generally prefer to remain vague, or even silent about this.
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In particular, certain puzzling features of both the Copenhagen interpretation and
the statistical interpretation get their explanation through the thermal interpretation
of quantum field theory. We shall see that these peculiar features get their natural
justification in the realm for which they were created—the statistics of few particle
scattering events.

Interpretations of the types (K) and (O) have little in common with the thermal
interpretation and are not further discussed.

16.2 The Copenhagen interpretation
The concept of observation is in so far arbitrary as it depends upon which objects are included in
the system to be observed. Ultimately every observation can of course be reduced to our sense per-
ceptions. The circumstance, however, that in interpreting observations use has always to be made
of theoretical notions, entails that for every particular case it is a question of convenience at what
point the concept of observation involving the quantum postulate with its inherent ‘irrationality’ is
brought in.

Niels Bohr, 1927 [39, p. 580]

Um zur Beobachtung zu gelangen, muss man also irgendwo ein Teilsystem aus der Welt ausschnei-
den und über dieses Teilsystem eben ’Aussagen’ oder ’Beobachtungen’ machen. Dadurch zerstört
man dort den feinen Zusammenhang der Erscheinungen und an der Stelle, wo wir den Schnitt zwis-
chen dem zubeobachtenden Systemeinerseits, demBeobachter und seinenApparaten andererseits
machen, müssen wir Schwierigkeiten für unsere Ansschauung erwarten. […] Jede Beobachtung teilt
in gewisser Weise die Welt ein in bekannte und unbekannte oder besser: mehr oder weniger genau
bekannte Grössen.

Werner Heisenberg, 1927 [118, pp. 593f]

wir müssen die Welt immer in zwei Teile teilen, der eine ist das beobachtete System, der andere
der Beobachter. In der ersteren können wir alle physikalischen Prozesse (prinzipiell wenigstens)
beliebig genau verfolgen, in der letzteren ist dies sinnlos. Die Grenze zwischen beiden ist weitgehend
willkürlich

John von Neumann, 1932 [217, pp. 223f]

Aus diesemZwiespalt ergibt sich die Notwendigkeit, bei der Beschreibung atomarer Vorgänge einen
Schnitt zu ziehen zwischen den Meßapparaten des Beobachters, die mit den klassischen Begriffen
beschrieben werden, und dem Beobachtungsobjekt, dessen Verhalten durch eine Wellenfunktion
dargestellt wird. Während nun sowohl auf der einen Seite des Schnittes, die zum Beobachter führt,
wie auf der anderen, die den Gegenstand der Beobachtung enthält, alle Zusammenhänge scharf de-
terminiert sind – hier durch die Gesetze der klassischen Physik, dort durch die Differentialgleichun-
gen der Quantenmechanik –, äußert sich die Existenz des Schnittes doch im Auftreten statistischer
Zusammenhänge. An der Stelle des Schnittes muß nämlich die Wirkung des Beobachtungsmittels
auf den zu beobachtenden Gegenstand als eine teilweise unkontroIlierbare Störung aufgefaßt wer-
den. […] Entscheidend ist hierbei insbesondere, daß die Lage des Schnittes – d. h. die Frage, welche
Gegenständemit zumBeobachtungsmittel undwelchemit zumBeobachtungsobjekt gerechnet wer-
den – für die Formulierung der Naturgesetze gleichgültig ist.

Werner Heisenberg, 1934 [121, pp. 670f]
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The Copenhagen interpretation is the interpretation of quantummechanics first ex-
pressed in 1927 by Bohr and Heisenberg. Until 1970, it has been (in various variants)
the almost generally accepted interpretation, though there is no document defining it
precisely; its contents was stated in varying ways depending on the occasion. One of
the probable reasons is that it had sufficient definiteness to guide theory, experiment,
and their relationship, andwas at the same time sufficiently vague that it allowed each
user to make sense of its paradoxical features in a personal, subjective way.

In our classification of interpretations of quantum mechanics, the Copenhagen
interpretation belongs to type (I); the term ‘knowledge’ used first by Heisenberg [117]
was not understood in the subjective way used in (K), but as the objective (through
thought experiments theoretically accessible) knowledge of what is real and in prin-
ciple observable about the system, whether observed or not.

One important feature of the Copenhagen interpretation is the so-called Heisen-
berg cut, first described by Heisenberg [118] and Bohr [39, pp. 580,584]—the artifi-
cial splitting of the world into a quantum domain and a classical domain. von Neu-
mann [217, p. 223f] showed that this cut can be placed fairly free without affecting the
main conclusions.

Whereas adequate for microscopic systems, the concept of a necessary cut fails
systematically for sufficiently large systems. For example, as all measurements are
done within the solar system, it excludes treating the solar system as a quantum sys-
tem (for example, measuring the mass of the earth).

As mentioned already in Section 7.6, the thermal interpretation nowhere imposes
a cut betweenmicroscopic andmacroscopic. It is not needed: A paper by Jeon&Yaffe
[149] derives the hydrodynamic equations from quantum field theory without assum-
ing a Heisenberg cut. Only the thermal interpretation is (implicitly) invoked, which
allows them to identify field expectations with the classical values of fields.

According to the thermal interpretation, classical physics appears gradually as
systems become more macroscopic. In continuation of the discussion in Section 11.3,
we call a quantum system, whose relevant quantities have a negligible uncertainty,
a classical system. It is typically described by nonequilibrium thermodynamics, as
deduced from quantum statistical mechanics; see Section 7.7. Thus, a classical sys-
tem is still quantum mechanical when modeled in full detail, but only the macro-
scopic variables modeled by statistical mechanics are deemed to be relevant. There-
fore, the thermal interpretation leads to a gradual change from quantum to classical
as the system gets larger, and the uncertainty of the collection of relevant quantities
decreases.

But the thermal interpretation realizes a modified version of the Heisenberg cut
as the choice of relevant variables in the coarse-grained description, which defines
the split between system and environment. According to the thermal interpretation,
there is no sharp cut, but a smooth fuzzy boundary, of the same kind as the boundary
between the Earth’s atmosphere and interplanetary space. The bigger one makes the
instrument, the more classical it becomes and the more accurate become the pointer
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positions. In place of deciding where to place the Heisenberg cut, we now have to
decide atwhich level of description theO(N−1/2) corrections can be neglected. This is a
decision just like thedecisionofwhether ornot to include into the classical description
of a pendulum the surrounding air and the way it is suspended, or whether taking it
into account with a damping term, or even neglecting that as well, is enough.

In quantum-classical approximations of a quantum system, the Heisenberg cut is
explicitly modeled by allowing for both classical and quantum degrees of freedom,
neglecting only irrelevant variables. As we have seen, the quantum-classical descrip-
tion naturally fits the thermal interpretation, since q-expectations occur explicitly in
the dynamics.

Die ’Bahn’ entsteht erst dadurch, daß wir sie beobachten
Werner Heisenberg, 1927 [117, p. 185]

Another puzzling feature of the Copenhagen interpretation is that an individual few-
particle system has no definite properties before it is observed. Taking the Copen-
hagen interpretation as an irreducible description of the nature of things leaves one
puzzled regarding how the observing instrument can be informed about what it ob-
serves, being virtually nonexistent before the act of observation. In his 1927 paper fa-
mous for the uncertainty relation, Heisenberg asserted that the path (of a particle) is
created only through the act of observation. Thus, the observation creates the proper-
ties. But it must be created by something to be observed! The thermal interpretation
gives the natural answer that this happens because the fields provide the information
about what is there to cause the detectors to respond, so that something is observed.
Hence, when measured, particles appear as detection events created by the detector
and mediated by fields (see Section 12.2).

In photodetection, tradition takes the individual detection results too seriously
and dogmatically3 interprets the random counting events as signals of single photons
arriving, with all the spooky problems associated with this view. In contrast, the ther-
mal interpretation treats it (as Stokes would have done it in 1852) as a very uncertain
measurement of energy density. Then the particle aspect completely disappears. This
is an advantage since, as we have seen in Section 12.7, it is difficult to specify, even in-
formally, a particle picture at finite times in terms of the underlying relativistic quan-
tum field description. How to do this with some degree of mathematical precision is
an unsolved problem.

Fragen wir also nicht, wo ist ein Teilchen genau, sondern begnügen wir uns, zu wissen, daß es in
einembestimmten größerenRaumteil ist: dann verschwindet derWiderspruch zwischenWellen und
Corpusculartheorie.

Max Born, 1929 [46, p. 116]

3 There is no way to test this assumption empirically.
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There is no doubt that while an atom is in an ion trap, it has a definite but uncertain
position. We know it is there and can check efficiently the duration of its presence. In-
deed, to do experiments with single atoms at all we need to know that they are there!
In the Copenhagen interpretation, this knowledge was outside the quantum domain,
on the classical side of the Heisenberg cut. The thermal interpretation preserves the
reality of atoms being somewhere reasonably well localized while rejecting the ide-
alization (made in classical point mechanics) that this position is given by an exact
3-dimensional real vector. This assumption leads to paradoxes both in classical elec-
trodynamics and in certain quantum mechanics experiments. In the thermal inter-
pretation, it is avoided from the start, since all quantities come with their intrinsic
uncertainty.

A “particle trace” on a photograph is also measurable. Tradition postulates that
a corresponding particle existed that left this trace. But this statement is not experi-
mentally refutable by any means, hence is a metaphysical assumption. Assuming it,
we can infer the uncertain position and momentum of a particle that was supposed
to create it at the time of its creation. But we might also argue, as in Section 12.2, and
declare—in analogy with the bullet experiment discussed there—the tracks as a mea-
sure of impact quality, not associated with any particle!

Grassi [107] and Jeon & Heinz [148, Section 5.3] (and many others) treat (in line
with the thermal picture) interacting elementary “particles” not as particles, but as
quantum fluids; only their freeze-out in scattering experiments produces particle-like
objects, in a way more or less analogous to how condensed droplets appear in satu-
rated liquids. However, the quantization introduces a discrete element into the quan-
tum numbers (and hence the number and distribution) of the resulting droplets, mea-
surable as impact events or particle tracks.

Jede Ortsbestimmung reduziert also das Wellenpaket wieder auf seine ursprüngliche Größe
Werner Heisenberg, 1927 [117, p. 186]

The state of the system after the observation must be an eigenstate of [the observable] α, since the
result of a measurement of α for this state must be a certainty.

Paul Dirac, 1930 [70, p. 49]

A third significant feature of the Copenhagen interpretation is the so-called collapse
of thewave function uponmeasurement, introduced in 1927 byHeisenberg [117]. Col-
lapse to what is controversial. The authoritative 2007 book by Schlosshauer [265]
takes the “jump into an eigenstate”, postulated by Dirac in the above quote, to be part
of what he calls the “standard interpretation” of quantum mechanics. On the other
hand, the older but also authoritative 1977 book by Landau & Lifschitz [171] explic-
itly remarks in the discussion in Section 7 that the state after the measurement is in
general not an eigenstate.

The collapse requirement contradicts the unitary evolution of pure states through
the Schrödinger equation (which is the mode of change of a closed system, hence in

Brought to you by | Stockholm University Library
Authenticated

Download Date | 10/28/19 6:32 PM



16.3 The minimal statistical interpretation | 253

the absence of a measurement), and depends on a not further detailed notion of mea-
surement residing on the classical side of the cut. What happens to the state while
the experiment is in progress but not complete is not specified. This makes the Copen-
hagen interpretation an incomplete description of the full temporal behavior of the
state.

This incompleteness is a sign thatwe actually deal with a coarse-grained, reduced
description. In such a reduced description, the description of the state of a particle is
different before and after it passes a filter (polarizer, magnet, double slit, et cetera).
The new information that the particle passed the filter requires a different description
analogous to that responsible for the use of classical conditional probability when
additional information arrives. In the quantum case, this is modeled by the collapse
of the wave function. Landau’s general case is the one modeled by event-based filters
(Section 11.5),whereasDirac’s situation ismodeled by the special case,where the filter
operators Rk are the spectral projectors of an ideal measurement (Section 11.8).

In the thermal interpretation, collapse results from coarse-graining when the lat-
ter produces a reduced stochastic description in the form of a PDP (see Section 11.7).
For example, we had seen in Section 7.8 that quantum-classical models may result
from coarse-graining, and Bonilla & Guinea [42] give an explicit quantum-classical
model that exhibits chaos and collapse.

Understanding that collapse comes from coarse-graining is a similar insight as
that friction comes from coarse graining, an insight familiar to classical mechanics
treated in the Markov approximation for a few relevant quantities. In both cases, the
insight bridges the difference in the dynamics of an isolated system and that on an
open system obtained by hiding the environment, turning it into a source of stochas-
tic events. The explanation by coarse graining is in both cases fully quantitative and
consistent with experiment, hence has all the features a good scientific explanation
should have.

16.3 The minimal statistical interpretation
I reject the basic idea of contemporary statistical quantum theory, insofar as I do not believe that
this fundamental concept will provide a useful basis for the whole of physics. […]
One arrives at very implausible theoretical conceptions, if one attempts to maintain the thesis that
the statistical quantum theory is in principle capable of producing a complete description of an indi-
vidual physical system. On the other hand, those difficulties of theoretical interpretation disappear,
if one views the quantum-mechanical description as the description of ensembles of systems. […]
Within the framework of statistical quantum theory there is no such thing as a complete description
of the individual system. […]
it appears unavoidable to look elsewhere for a complete description of the individual system. […]
I am rather firmly convinced that the development of theoretical physics will be of this type; but the
path will be lengthy and difficult. […]
the expectation that the adequate formulation of the universal laws involves the use of all concep-
tual elements which are necessary for a complete description, is more natural. […]
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If it should be possible to move forward to a complete description, it is likely that the laws would
represent relations amongall the conceptual elements of this descriptionwhich, per se, havenothing
to do with statistics.

Albert Einstein, 1949 [80, p. 673]

The Statistical Interpretation, according to which a pure state (and hence also a general state)
provides adescription of certain statistical properties of an ensemble of similarily prepared systems.
[…]
In general, quantum theory predicts nothing which is relevant to a single measurement (excluding
strict conservation laws like those of charge, energy, or momentum), and the result of a calculation
pertains directly to an ensemble of similar measurements. For example, a single scattering experi-
ment consists in shooting a single particle at a target and measuring its angle of scatter. Quantum
theory does not deal with such an experiment, but rather with the statistical distribution (the differ-
ential cross section) of the results of an ensemble of similar experiments.

Leslie Ballentine, 1970 [22, pp. 360f]

We can now define the scope of quantum theory: In a strict sense, quantum theory is a set of rules
allowing the computation of probabilities for the outcomes of tests which follow specified prepara-
tions. […]
The above strict definition of quantum theory (a set of rules for computing the probabilities of
macroscopic events) is not the way it is understood bymost practicing physicists. They would rather
say that quantum theory is used to compute the properties of microscopic objects, for example the
energy-levels and cross-sections of atoms and nuclei. The theory can also explain some properties
of bulk matter, such as the specific heat of solids or the electric conductivity of metals – whenever
these macroscopic properties can be derived from those of the microscopic constituents. Despite
this uncontested success, the epistemological meaning of quantum theory is fraught with contro-
versy, perhaps because it is formulated in a language where familiar words are given unfamiliar
meanings. Do these microscopic objects – electrons, photons, etc. – really exist, or are they only a
convenient fiction introduced to help our reasoning, by supplying intuitive models in circumstances
where ordinary intuition is useless?

Asher Peres, 2002 [233, p. 13]

That quantummechanical states should be interpreted statistically goes back to 1926.
Born [43, 44] had shownhow the known statistical properties of scattering events are,
in some sense, consistent with the deterministic Schrödinger equation, and can be
derived from it assuming a statistical interpretation of the wave function. This earned
him later a Nobel prize. But in Born’s view, particles existed always in joint eigen-
states of Hamiltonian andmomentum that were modified discontinuously by random
quantum jumps. In thisway, the exact validity of the conservation laws of energy and
momentum could be asserted.

Statistical interpretations in the precise sense (S) defined at the beginning of
Chapter 16, have their beginnings with Weyl [300] and were discussed extensively by
Ballentine [22], who contrasted it to the Copenhagen interpretation. In these statis-
tical interpretations, a single (few or many particle) system has no state. Instead, the
state is a property of the ensemble; one only talks about the prepared and observed
properties of a population of experiments making up the ensemble. Equivalently,
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the preparation procedure (which defines the ensemble on which measurements are
performed) has, or defines, a state.

Theminimal interpretation is a statistical interpretation (S) augmented by the
additional stipulation that quantummechanics is completely silent about a single sys-
tem, and hence says nothing at all about it.4

According to Ballentine [22, pp. 366], for a consistent statistical interpretation,
the notion of preparationmust be clearly distinguished from that ofmeasurement:
“State preparation refers to any procedure which will yield a statistically reproducible
ensemble of systems. The concept of state in quantum theory can be considered op-
erationally as an abbreviation for a description of the state preparation procedure. Of
course there may be more than one experimental procedure which yields the same sta-
tistical ensemble, i. e., the same state. An important special case (which is sometimes
incorrectly identified with measurement) is a filtering operation, which ensures that if
a system passes through the filter it must immediately afterward have a value of some
particular observable within a restricted range of its eigenvalue spectrum. On the other
hand, measurement of some quantity E for an individual system means an interaction
between the system and a suitable apparatus, so that wemay infer the value of R (within
some finite limits of accuracy) which the system had immediately before the interaction
(or the value of R which the system would have had if it had not interacted, allowing for
the possibility that the interaction will disturb the system).” The filtering mentioned
replaces the collapse in the Copenhagen interpretation, and serves the same purpose.
In the thermal interpretation, it is modeled by event-based filters (Section 11.5).

The thermal interpretation of the situation described is that the preparation de-
fines a state of the quantum fields present in the description. Their interaction with
the detector produces observable events, whose statistics measures properties of the
fields. In principle, quantum tomography (see Section 11.5) can be used to calibrate
sufficiently stationary unknown sources, so that one can be sure which state they pre-
pare in which setting. Knowing what was prepared and how to control it systemati-
cally, one can collect event statistics for new experimental settings and establish—on

4 True minimality is rare. Einstein [80] finds only the minimal interpretation consistent, but takes
this as a limitation of quantum mechanics and expects the existence of a deeper underlying deter-
ministic description. Ballentine [22] is not minimal throughout (despite an attempt to be so), as he
assumes (p. 361) that definite positions exist: “The Statistical Interpretation considers a particle to al-
ways be at some position in space, each position being realized with relative frequency |ψ(r)|2 in an
ensemble of similarily prepared experiments.” Even the most consequent book by Peres makes an ex-
ception at the very end (pp. 424f): “This would cause no conceptual difficulty with quantum theory if
the Moon, the planets, the interstellar atoms, etc., had a well defined state ρ. However, I have insisted
throughout this book that ρ is not a property of an individual system, but represents the procedure for
preparing an ensemble of such systems. How shall we describe situations that have no preparer? […]
Thus, a macroscopic object effectively […] mimics, with a good approximation, a statistical ensemble.
[…] You must have noted the difference between the present pragmatic approach and the dogmas held
in the early chapters of this book.”
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the basis of the resulting experimental evidence—a relation (10.2) between measure-
ment results and properties of the system measured.

The single systems that allegedly travel from the source to the detector (but ac-
cording to the minimal interpretation without any quantum properties) never enter
the description, hence one cannot (and need not) say anything about these.

In a statistical interpretation, all statements claimed about single quantum sys-
tems are nonminimal. In particular, unlike the thermal interpretation, the minimal
interpretation does not address the foundational problems posed by the ensembles of
equilibrium thermodynamics (see Chapter II [204, Section 2.4]). Indeed, Ballentine
[22, pp. 361] writes: “The ensembles contemplated here are different in principle from
those used in statistical thermodynamics, where we employ a representative ensemble
for calculations, but the result of a calculationmay be comparedwith ameasurement on
a single system. […] Because the ensemble in the statistical interpretation is not merely
a representative or calculational device, but rather it can and must be realized experi-
mentally, it does not inject into quantum theory the same conceptual problems posed in
statistical thermodynamics.”
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classical Lie product 19
classical limit 81
classical mechanics 96
classical physics 158
classical spin 80
classical stochastic dynamics 107
classical system 250
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coherent states 69, 72
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coherently convergent 76
collapse 191, 252
completed quantum space 72
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conditional expectation 40
conditional information 225
conditional probability 40
conditionally positive 54, 66
conditionally semidefinite 54
conjugate 102
consistent histories interpretation 4
continuous time Markov chain 96
conventions 104
converges 48
Copenhagen interpretation 3, 158, 250
covariant Schrödinger equation 116
covariant Ehrenfest equation 105
covariant Schrödinger picture 116
covariant von Neumann equation 116
cumulative distribution function 37

de Branges function 82
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decoherence 4, 124, 174
degree 84
degree of polarization 148
density 38, 126
density matrix 192
density operator 107
destructive measurements 184
detector 143, 166
detectors 182
deterministic 186
deterministic instrument 188
Dirac–Frenkel variational principle 93, 124
discrete events 197
dissipation 155
distance 75
distance-regular graphs 10, 88
distribution 38
dual 50, 104
dynamical Lie algebra 110
dynamical symmetry group 98

effective description 155
Ehrenfest equation 21, 106
Ehrenfest equations 154
Ehrenfest picture 22
electron optics 213
endomorphism 73
ensemble 42
ensemble interpretation 4
entropy 125
entropy operator 122
environment 155
environment Hilbert space 168
equilibrium 127
equilibrium state 125
ergodic theorem 43
essentially self-adjoint 177
Euclidean field theory 119
Euclidean norm 50
Euclidean Poisson algebras 20
Euclidean space 47
Euclidean spacetime 119
event-based filter 193
event-based instrument 191, 192
Everett’s relative state interpretation 4
exactly solvable 100
exist 145, 165
exists 103
expectation 36, 44, 45
expected value 36
experimental physics 156
experiments 35, 156
extended causality 223
extended object 222
extensive variables 126

factors of type III1 245
false 36
field 114
field strengths 126
filtering 255
fixed 245
Fock spaces 72
forced harmonic oscillator 26
formal Born rule 29
formal core 17
frequentist 44

g-factor 110
general linear group 88
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General uncertainty principle 33, 104
geometric phase 100
geometric quantization 102
geometric quantization of Kähler manifolds 102
Ghirardi–Rimini–Weber theory 4
Gibbs states 125
Glauber coherent states 81
global equilibrium 126
Gram matrix 54
grand canonical ensemble 126
Greens functions 115
(GUP) 33, 104

ℍ× 48
Hamilton equations 129
Hamiltonian 18, 99, 106
Heisenberg cut 4, 250
Heisenberg picture 22
Heisenberg uncertainty relation 34
Hermitian 54
Hermitian inner product 47
Hermitian line bundle 102
Hidden variable interpretations 159
Hilbert space 51
Hopf fibration 96

ideal binary measurement 46
ideal measurement 199
identically prepared 43, 135
implicit Schrödinger equation 109
improper mixed state 241
independent 43
independent identical system 136
indistinguishable 34, 41
Individual interpretations 248
infer 252
infinitesimal symmetry 98
infraparticle 237
instances 103
instruments 182
integrable 111
intensive variables 126
interaction 22
interaction picture 22
internal energy 18
interpretation 143, 176
interpretation of quantum mechanics 17
interpretations of quantum mechanics 3
involutive coherent manifold 102

isolated 18
isolated quantum systems 107
isometric 53
isometry 53, 88
isomorphic 53, 73
isomorphism 53, 74

Jacobi identity 103
joint property 222

Kähler manifold 102
Kähler potential 102
kinematic symmetry group 110
kinetic regime 127
Klauder space 71
knowledge 39
Knowledge interpretations 159, 248
Koopman Hamiltonian 132

Lagrangian 94
length 75
Lie ∗-algebra 103
Lie algebra 103
Lie product 103
Lin× 54
line bundles 89
Liouville equation 129
local equilibrium 126

macroscopic system 187
magnetic moment 110
many worlds interpretation 4
mean 36, 43
measured 166
measured values 2
measurement 143, 166, 255
measurement error 176
Measurement principle 183
measurement problem 4, 195
measurement result 176
measurement results 136
measurements 156
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Minkowski spacetime 118
mixed 27
mixed states 1
Möbius space 89
momentum 18
momentum vector 105
morphism 73
(MP) 183

no definite properties 251
Noether principle 98
noise 42
nondegenerate 76
nondestructive measurements 184
nonlocal properties 154
normal 83
normalization 56
normalized 94
nuclear reactions 218

objective 165
objective properties 153, 165
observable 2, 105
observables 98
of positive type 54
one 103
ontology 165
open 18
open systems 155
orbital angular momentum 18
orthodox interpretation 3
orthogonal projectors 199
oscillator algebra 110
Other interpretations 248

partial inner product 52
partially polarized light 80
particle 154, 212
particle-wave duality 95
particular physical system 104
partition function 28
photoelectric effect 202
physical system 167
physical systems 103
PIP 52
PIP space 52
Planck constant 80
Poincaré group 118

Poincaré sphere 80
point causality 223
point object 222
Poisson manifold 23
population 42
populations 153
position 18
position representation 1
positive operator-valued measure 192
positive semidefinite 54
posterior 185
posterior probability 41
POVM 192
preparation 2, 168, 190, 192, 255
prepared 168
pressure 126
prior 185
prior probability 41
probability 36, 184
projection 29
projective 84
projective extension 85
proper mixed state 241
properties 19, 34, 103, 145
protocol 35
pure 27
pure state 1, 168

q-correlations 120
q-expectation 18, 20
q-expectation value 195
q-expectations 107, 153
q-observable 32
q-observables 18
q-probabilities 19, 29
q-probability 45
QED 117
quantities 103, 153
quantity 32
quantization 97
quantization map 97
Quantization theorem 97
quantized 179
quantum buckets 216
quantum electrodynamics 117
quantum equilibrium 127
quantum estimation theory 193
quantum field theory 72
quantum Hamiltonian 94, 99

Brought to you by | Stockholm University Library
Authenticated

Download Date | 10/29/19 8:40 AM



Index | 279

quantum jumps 254
quantum Lie bracket 19
quantum magicians 8
quantum observables 18
quantum space 72
quantum symmetry 98
quantum system 1
quantum tomography 192
quantum-classical dynamics 129
quasiparticles 213
qubit 80, 106

random variables 35, 132
real 165
realization 35
reduced dynamics 123
reduced state 166
regular states 107
relative frequency 190
relevant quantities 123, 126
reproducibility 183
reproducing kernel 62
reproducing kernel Hilbert space 62
resolution 105
restriction 56
Riesz representation theorem 52
rigid rotator 106
Rydberg–Ritz combination principle 26

sample 35
sample mean 35
sample space 35
sampling 42
scalar multiplication 84
scaled coherent product 84
Schrödinger equation 2, 94
Schrödinger picture 22
Schur function 83
second quantization 97
self-adjoint 18
semiclassical 213
semicoherent products 70
semicoherent spaces 70
semiquantal 94
semisimple Lie groups 89
Separable causality 223
sharp 177
shot noise 215

shut-up-and-calculate 3
SIC-POVM 10
significant 42
single quantum systems 153
smeared fields 113, 114
smooth 77
(SP) 44
spacetime 118
spacetime symmetries 118
spectrum 45, 111, 177
spin 80
spin coherent states 80
spin vector 18
spinning electron 96
squared probability amplitude 46
squeezed states 90
standard 168
standard interpretation 3
state 18, 103, 153, 165
state vector 28, 168
statement 36, 46, 165
statistical 186
statistical instrument 190
Statistical interpretations 158, 248
Statistical principle 44
statistically consistent 136
statistics 184
Stieltjes integral representation 38
stochastic model 36
stochasticity 155
strict topology 50
strongly smooth 77
subsystem 105, 166
subsystems 155
symmetric, informationally complete, positive

operator valued measures 10
symmetric cones 89
symmetric spaces 89
symmetries 104
symmetry 88
system Hilbert space 168
system operator 109
Szegö space 83

temperature 126
test for a state 46
test function 113
thermal interpretation xi, 4, 11, 151

Brought to you by | Stockholm University Library
Authenticated

Download Date | 10/29/19 8:40 AM



280 | Index

thermodynamic forces 126
time-dependent Hartree–Fock equations 108
time-dependent Schrödinger equation 29, 99
time-independent Schrödinger equation 99
transactional interpretation 4
triangle inequality 50
true 36
truth 139
typical 35

uncertain number 183
uncertain value 32, 33, 104
uncertainties 153
uncertainty 32, 33, 104, 105, 183
unitary 88
unitary evolution 2
unitary representation 97, 103

universe 146, 154, 167
update ratio 41

vacuum fluctuations 43
value 105
Virasoro group 119
von Neumann projection postulate 3

wave function 1
Weak law of large numbers 43
weak-* limit 48
weak-* topology 45, 48
weight 40
Wightman axioms 119
world tube 153

Zauner’s conjecture 10
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